分析 利用向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理即可得出.
解答 解:$\overrightarrow{a}$+2$\overrightarrow$=(2m-1,4),2$\overrightarrow{a}$-$\overrightarrow$=(-2-m,3),
∵$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,∴4(-2-m)-3(2m-1)=0,
解得m=-$\frac{1}{2}$,
則$\overrightarrow{a}$+$\overrightarrow$=$(-\frac{3}{2},3)$.
故答案為:$(-\frac{3}{2},3)$.
點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等邊三角形 | B. | 直角三角形 | ||
C. | 鈍角三角形 | D. | 三邊互不相等的三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5,10,15 | B. | 3,18,9 | C. | 3,10,17 | D. | 5,9,16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=f(x)在區(qū)間(0,0.4)上遞減 | B. | y=f(x)在區(qū)間(0.35,1)上遞減 | ||
C. | y=f(x)的最小值為f(0.4) | D. | y=f(x)在(0.3,0.4)上有最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\frac{{{e^x}-1}}{{{x^2}-1}}$ | B. | $f(x)=\frac{e^x}{{{x^2}-1}}$ | C. | $f(x)=\frac{{{x^3}+x+1}}{{{x^2}-1}}$ | D. | $f(x)=\frac{{{x^4}+x+1}}{{{x^2}-1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com