【題目】下列說法中錯(cuò)誤的是(

A. 給定兩個(gè)命題,若為真命題,則都是假命題;

B. 命題“若,則”的逆否命題是“若,則”;

C. 若命題,則,使得;

D. 函數(shù)處的導(dǎo)數(shù)存在,若的極值點(diǎn),則 的充要條件.

【答案】D

【解析】

結(jié)合題意逐一考查所給的選項(xiàng)是否正確即可.

逐一考查所給的選項(xiàng):

A. 給定兩個(gè)命題,若為真命題,由真值表可知均為真命題,則都是假命題,題中的命題正確;

B. 同時(shí)否定條件和結(jié)論,然后交換條件和結(jié)論的位置即可得到一個(gè)命題的逆否命題,據(jù)此可知命題,則的逆否命題是,則”,題中的命題正確;

C. 全稱命題的否定為特稱命題,若命題,則,使得題中的命題正確;

D. 函數(shù)的導(dǎo)函數(shù)為,在處的導(dǎo)函數(shù),但是函數(shù)在坐標(biāo)原點(diǎn)處沒有極值,故函數(shù)處的導(dǎo)數(shù)存在,若的極值點(diǎn),則不是 的充要條件,題中的命題錯(cuò)誤.

本題選擇D選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點(diǎn)之和為(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: 的左右焦點(diǎn)分別 ,過作垂直于軸的直線交橢圓于兩點(diǎn),滿足.

(1)求橢圓的離心率.

(2)是橢圓短軸的兩個(gè)端點(diǎn),設(shè)點(diǎn)是橢圓上一點(diǎn)(異于橢圓的頂點(diǎn)),直線分別與軸相交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對(duì)任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=e|lnx|(e為自然對(duì)數(shù)的底數(shù)).若x1≠x2且f(x1)=f(x2),則下列結(jié)論一定不成立的是(
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)).若直線分別與圓和圓交于不同于原點(diǎn)的點(diǎn)

(1)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,求圓和圓的極坐標(biāo)方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,下列結(jié)論中錯(cuò)誤的是

A. , f()=0

B. 函數(shù)y=f(x)的圖像是中心對(duì)稱圖形

C. f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,)單調(diào)遞減

D. fx)的極值點(diǎn),則()=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是以AB為直徑的圓,點(diǎn)C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點(diǎn)E.若EB=6,EC=6 ,則BC的長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為曲線上兩點(diǎn),的橫坐標(biāo)之和為

(1)求直線的斜率;

(2)為曲線上一點(diǎn),處的切線與直線平行,且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案