2
2
3
4
1
2
32-
1
2
4
5
8
4
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)的運(yùn)算法則即可得出.
解答: 解:原式=22×4
3
2
×2-2×4
5
2

=44
=256.
點(diǎn)評(píng):本題考查了指數(shù)的運(yùn)算法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,A為動(dòng)點(diǎn),B、C為定點(diǎn),B(-
a
2
,0),C(
a
2
,0)(a>0)且滿足條件|sinC-sinB|=
1
2
sinA,則動(dòng)點(diǎn)A的軌跡方程是( 。
A、
16x2
a2
-
16y2
15a2
=1(y≠0)
B、
16x2
a2
-
16y2
3a2
=1(x≠0)
C、
16x2
a2
-
16y2
15a2
=1(x<-
a
4
D、
16x2
a2
-
16y2
3a2
=1(x>
a
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為△ABC所在平面內(nèi)一點(diǎn),且滿足
AP
=
1
3
AC
+
2
3
AB
,則△APB的面積與△APC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量中從集合A到A的映射f由f(x)=x-2(x•
a
)•
a
確定,其中
a
為常向量,若映射f滿足f(x)•f(y)=x•y,對(duì)x,y∈A恒成立,則|
a
|=( 。
A、1
B、2
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只要將f(x)的圖象( 。
A、向右平移
π
6
個(gè)單位長(zhǎng)度
B、向右平移
π
12
個(gè)單位長(zhǎng)度
C、向左平移
π
6
個(gè)單位長(zhǎng)度
D、向左平移
π
12
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若原點(diǎn)O到直線Ax+By+C=0的距離為1,則A2+B2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,有一個(gè)頂點(diǎn)為A(-4,0),橢圓兩準(zhǔn)線間的距離為16.
(Ⅰ)求橢圓C的方程:
(Ⅱ)過(guò)點(diǎn)B(-1,0)作直線l與橢圓C交于E,F(xiàn)兩點(diǎn),線段EF的中點(diǎn)為M,求直線MA的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(x,0),
b
=(1,y),(
3
a
+
b
)⊥(
3
a
-
b
).
(1)求點(diǎn)P(x,y)的軌跡C的方程;
(2)若直線l:y=kx-1與曲線C交于A、B兩點(diǎn),并且A、B在y軸的異側(cè),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD 是BC邊上的中線,F(xiàn)是AD上的一點(diǎn),且
AF
FD
=
1
5
,連結(jié)CF并延長(zhǎng)交AB于E,則
AE
EB
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案