【題目】已知函數(shù).

(1)若關于的方程在區(qū)間上有解,求實數(shù)的取值范圍;

(2)若恒成立,求實數(shù)的取值范圍.

【答案】(1) m的取值范圍是;(2)實數(shù)a的取值范圍是.

【解析】試題分析:(1)即求函數(shù)在區(qū)間上值域,先求導數(shù),再求導函數(shù)零點,列表分析導數(shù)符號變化規(guī)律,確定單調性,進而根據(jù)單調性求值域,(2)先參變分離,轉化為求對應函數(shù)最值:的最小值,利用二次求導可得函數(shù)單調性,再根據(jù)單調性確定其最小值取法,最后根據(jù)最小值得實數(shù)的取值范圍.

試題解析:(1)方程即為.

,則.

,則(舍),.

當x∈[1, 3]時,隨x變化情況如表:

x

1

3

0

極大值

∴當x∈[1,3]時,.

∴m的取值范圍是.

(2)據(jù)題意,得恒成立.

,

.

,則當x>0時,

∴函數(shù)上遞增.

,

存在唯一的零點c∈(0,1),且當x∈(0,c)時,;當時,

.

∴當x∈(0,c)時,;當時,.

在(0,c)上遞減,在上遞增,從而.

,即,兩邊取對數(shù)得,

.

,即所求實數(shù)a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù),且滿足 ,數(shù)列滿足),則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足下列條件:在定義域內存在,使得成立,則稱函數(shù)具有性質;反之,若不存在,則稱函數(shù)不具有性質.

1)已知函數(shù)具有性質,求出對應的的值;

2)證明:函數(shù)一定不具有性質;

3)下列三個函數(shù):,,,哪些恒具有性質,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADAB,ABDCADDCAP2,AB1,點E為棱PC的中點.

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點,滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】風景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測得A,B兩點間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過定點A,該點也在拋物線上,若拋物線與圓有公共點P,且拋物線在P點處的切線與圓C也相切,則圓C上的點到拋物線的準線的距離的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,四邊形是矩形,平面 平面,點、分別為中點.

1)求證: 平面

2,求平面DEF與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:

方案①:以為母線,將A作為圓柱的側面展開圖,并從B,C中各裁剪出一個圓形作為圓柱的兩個底面;

方案②:以為側棱,將A作為正四棱柱的側面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與垂直)作為正四棱柱的兩個底面.

1BC都是正方形,且其內切圓恰為按方案①制成的圓柱的底面,求底面半徑;

2的長為dm,則當為多少時,能使按方案②制成的正四棱柱的體積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右頂點分別為右焦點為,直線是橢圓在點處的切線.設點是橢圓上異于的動點,直線與直線的交點為,且當, 是等腰三角形.

Ⅰ)求橢圓的離心率;

Ⅱ)設橢圓的長軸長等于,當點運動時,試判斷以為直徑的圓與直線的位置關系,并加以證明.

查看答案和解析>>

同步練習冊答案