16.若log545=a,則log53等于( 。
A.$\frac{2}{a-1}$B.$\frac{2}{1+a}$C.$\frac{a+1}{2}$D.$\frac{a-1}{2}$

分析 利用對數(shù)的運算性質(zhì)即可得出.

解答 解:∵log545=a=1+2log53,則log53=$\frac{a-1}{2}$.
故選:D.

點評 本題考查了對數(shù)的運算性質(zhì)、指數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π}),sinβ=\frac{{2\sqrt{2}}}{3},sin({α+β})=\frac{7}{9}$,則sinα的值為$\frac{1}{3}$;$tan\frac{α}{2}$的值為3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某地自來水苯超標,當?shù)刈詠硭緦λ|(zhì)檢測后,決定在水中投放一種藥劑來凈化水質(zhì),已知每投放質(zhì)量為m的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足y=mf(x),其中f(x)=$\left\{\begin{array}{l}\frac{x^2}{25}+2,({0<x≤5})\\ \frac{x+19}{2x-2},({x>5})\end{array}$,當藥劑在水中的濃度不低于5(毫克/升)時稱為有效凈化;當藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.
(Ⅰ)如果投放的藥劑質(zhì)量為m=5,試問自來水達到有效凈化一共可持續(xù)幾天?
(Ⅱ)如果投放的藥劑質(zhì)量為m,為了使在9天(從投放藥劑算起包括9天)之內(nèi)的自來水達到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定義域上的單調(diào)增函數(shù),則a的取值范圍是( 。
A.[3-$\sqrt{3}$,2)B.$(\sqrt{5}-1,\sqrt{3})$C.$(1,\sqrt{3})$D.$(1,3-\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=-2x2+ax+b且f(2)=-3.
(1)若函數(shù)f(x)的圖象關(guān)于直線x=1對稱,求函數(shù)f(x)在區(qū)間[-2,3]上的值域;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上遞減,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若x>0,則函數(shù)${y_1}=-{a^{-x}}$與y2=logax(a>0,且a≠1)在同一坐標系上的部分圖象只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若f(log2a)+f(2log${\;}_{\frac{1}{4}}$a)≥2f(-1),則實數(shù)a的取值范圍是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項和為Sn,且S3=9,a2a4=21,數(shù)列{bn}滿足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}})$,若${b_n}<\frac{1}{10}$,則n的最小值為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知f(x)是R上的奇函數(shù),f(1)=1,且對任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(2015)+f(2016)的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步練習冊答案