分析 由已知可求范圍α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),利用同角三角函數(shù)基本關(guān)系式可求cos(α+β),sinβ的值,利用角的關(guān)系α=(α+β)-β,根據(jù)兩角差的正弦函數(shù)公式即可化簡(jiǎn)求值,進(jìn)而可求cosα,利用同角三角函數(shù)基本關(guān)系式,降冪公式即可計(jì)算得解$tan\frac{α}{2}$的值.
解答 解:∵α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),
∴α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),…1分
∴cos(α+β)=-$\sqrt{1-si{n}^{2}(α+β)}$=-$\frac{4\sqrt{2}}{9}$,…3分
∴cosβ=$\sqrt{1-si{n}^{2}β}$=-$\frac{1}{3}$,…5分
∴sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=$\frac{7}{9}$×(-$\frac{1}{3}$)-(-$\frac{4\sqrt{2}}{9}$)×$\frac{2\sqrt{2}}{3}$=$\frac{1}{3}$.
∵cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{2}}{3}$,
∴$tan\frac{α}{2}$=$\sqrt{\frac{1}{co{s}^{2}\frac{α}{2}}-1}$=$\sqrt{\frac{2}{1+cosα}-1}$=3-2$\sqrt{2}$.
故答案為:$\frac{1}{3},3-2\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式,降冪公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -120 | B. | -80 | C. | 80 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-8<x<2} | B. | {1} | C. | {0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{a-1}$ | B. | $\frac{2}{1+a}$ | C. | $\frac{a+1}{2}$ | D. | $\frac{a-1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com