4.記Sn是各項(xiàng)均為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和,若a1≥1,則( 。
A.S2mS2n≥Sm+n2,lnS2mlnS2n≤ln2Sm+n
B.S2mS2n≤Sm+n2,lnS2mlnS2n≤ln2Sm+n
C.S2mS2n≥Sm+n2,lnS2mlnS2n≥ln2Sm+n
D.S2mS2n≤Sm+n2,lnS2mlnS2n≥ln2Sm+n

分析 舉出符合條件的數(shù)列,采用驗(yàn)證得答案.

解答 解:由Sn是各項(xiàng)均為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和,
可采用取特殊數(shù)列方法驗(yàn)證排除,如:數(shù)列1,2,3,4,5,6,…
取m=1,n=1,則S2m=S2=3,S2n=S4=10,Sm+n=S3=6,
∴S2mS2n=S2S4=30<36=${{S}_{3}}^{2}$=Sm+n2,
lnS2mlnS2n=ln3•ln10<ln26=ln2Sm+n
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的前n項(xiàng)和,考查了對(duì)數(shù)的運(yùn)算性質(zhì),訓(xùn)練了利用特值法求解選擇題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若m=3,則輸出的結(jié)果為( 。
A.3B.27C.81D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.當(dāng)a為何值時(shí),(a-2)x2+4$\sqrt{5}$x+a-3<0的解為一切實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.斜率為2,且與y軸交點(diǎn)是(0,-3)的直線方程是y=2x-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)求證:1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>$\frac{7}{6}$-$\frac{1}{2(2n-1)}$(n≥2)
(2)求證:$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+…+$\frac{1}{4{n}^{2}}$<$\frac{1}{2}$-$\frac{1}{4n}$
(3)求證:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1
(4)求證:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$($\sqrt{2n+1}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{bn}滿足bn=$\frac{1}{n}$•($\frac{3}{2}$)n,求bn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在等差數(shù)列{an}中,已知a3=8,且滿足a10>21,a12<27,若d∈Z,求公差d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知△ABC中,AB=5,AC=8.∠BAC=60°,I為△ABC內(nèi)心,滿足$\overrightarrow{AI}$=m$\overrightarrow{BI}$+n$\overrightarrow{CI}$,則7(|m|+|n|)=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知圓O:x2+y2=1,直線l過(guò)點(diǎn)(-2,0),若直線l上任意一點(diǎn)到圓心距離的最小值等于圓的半徑,則直線l的斜率為( 。
A.$±\frac{{\sqrt{3}}}{3}$B.±3C.$±\sqrt{2}$D.±1

查看答案和解析>>

同步練習(xí)冊(cè)答案