A. | 充分而不必要的條件 | B. | 必要而不充分的條件 | ||
C. | 充要條件 | D. | 既不充分也不必要的條件 |
分析 由題意,可由函數(shù)的性質(zhì)得出f(x)為[-1,0]上是減函數(shù),再由函數(shù)的周期性即可得出f(x)為[3,4]上的減函數(shù),由此證明充分性,再由f(x)為[3,4]上的減函數(shù)結(jié)合周期性即可得出f(x)為[-1,0]上是減函數(shù),再由函數(shù)是偶函數(shù)即可得出f(x)為[0,1]上的增函數(shù),由此證明必要性,即可得出正確選項
解答 解:∵f(x)是定義在R上的偶函數(shù),
∴若f(x)為[0,1]上的增函數(shù),則f(x)為[-1,0]上是減函數(shù),
又∵f(x)是定義在R上的以2為周期的函數(shù),且[3,4]與[-1,0]相差兩個周期,
∴兩區(qū)間上的單調(diào)性一致,所以可以得出f(x)為[3,4]上的減函數(shù),故充分性成立.
若f(x)為[3,4]上的減函數(shù),同樣由函數(shù)周期性可得出f(x)為[-1,0]上是減函數(shù),再由函數(shù)是偶函數(shù)可得出f(x)為[0,1]上的增函數(shù),故必要性成立.
綜上,“f(x)為[0,1]上的增函數(shù)”是“f(x)為[3,4]上的減函數(shù)”的充要條件.
故選C.
點評 本題考查充分性與必要性的判斷,解題的關(guān)鍵是理解充分性與必要性證明的方向,即由那個條件到那個條件的證明是充分性,那個方向是必要性,初學(xué)者易搞不清證明的方向?qū)е卤硎錾铣霈F(xiàn)邏輯錯
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4) | B. | [1,2] | C. | [2,4] | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 cm | B. | 7.2 cm | C. | 2.4 cm | D. | 3.6 cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∁UA∪(A∩B) | B. | ∁UA∩∁UB | C. | ∁UA∪∁UB | D. | ∁U(A∪B)∪(A∩B) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com