15.在傾斜角等于30°的山坡上豎立一根旗桿,當(dāng)太陽(yáng)在山頂上方時(shí),從山腳看太陽(yáng)的仰角是60°,旗桿此時(shí)在山坡上的影子長(zhǎng)是25米,則旗桿高為( 。
A.25米B.12.5米C.22米D.30米

分析 作出圖示,由題意可得旗桿,影子及太陽(yáng)光線組成一個(gè)等腰三角形.

解答 解:設(shè)旗桿為AD,山坡為CD,則∠BCD=30°,∠BCA=60°,CD=25m.
∵B=90°,∴A=30°,∠ACD=30°,
∴△ACD是等腰三角形,
∴AD=CD=25m.
故選:A.

點(diǎn)評(píng) 本題考查了解三角形的應(yīng)用,發(fā)現(xiàn)△ACD的形狀是解題關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知x+y-1=0,則$\sqrt{{x}^{2}+{y}^{2}}$的最小值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知△ABC的角A、B、C的對(duì)邊分別為a、b、c,若向量$\overrightarrow{m}$=(2a-b,c)與$\overrightarrow{n}$=(cosB,cosC)共線.
(Ⅰ)求角C的大。
(Ⅱ)若|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|=2,求a的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知cos(π-α)=-$\frac{3}{5}$,$\frac{3π}{2}$<α<2π,求tan(2π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓;
②當(dāng)x>0且x≠1時(shí),有l(wèi)nx+$\frac{1}{lnx}$≥2;
③已知曲線C:$\sqrt{\frac{{x}^{2}}{9}}-\sqrt{\frac{{y}^{2}}{16}}=1$和兩定點(diǎn)E(-5,0),F(xiàn)(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||≤6;
④函數(shù)y=2+logax的圖象可以有函數(shù)y=logax(其中a>0且a≠1)的圖象通過(guò)伸縮變換得到.
上述命題中錯(cuò)誤命題的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求點(diǎn)M(2,-1)到直線3x-4y-2=0的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(2,0)與$\overrightarrow$=(1,-2),求|2$\overrightarrow{a}$-$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.點(diǎn)F為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),以F為焦點(diǎn)的拋物線y2=2px(p>0)交雙曲線于A,B兩點(diǎn),且$\overrightarrow{AF}$=$\overrightarrow{FB}$,則雙曲線的離心率為1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓M:$\frac{{x}^{2}}{4^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為4+2$\sqrt{3}$.
(1)求橢圓M的方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案