20.求點(diǎn)M(2,-1)到直線3x-4y-2=0的距離.

分析 把已知數(shù)據(jù)代入點(diǎn)到直線的距離公式,計(jì)算可得.

解答 解:由點(diǎn)到直線的距離公式可得:
點(diǎn)M(2,-1)到直線3x-4y-2=0的距離d=$\frac{|3×2-4×(-1)-2|}{\sqrt{{3}^{2}+(-4)^{2}}}$=$\frac{8}{5}$

點(diǎn)評(píng) 本題考查點(diǎn)到直線的距離公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.(2003年)已知sinα•cosα=-$\frac{1}{5}$,則cos4α的值為(  )
A.$\frac{1}{25}$B.$\frac{8}{25}$C.$\frac{17}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.3個(gè)人要坐在一排的8個(gè)空座位上,若每個(gè)人左右都有空座位,求不同坐法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(1-x+x2)(x+$\frac{1}{x}$)5的展開式中x3的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在傾斜角等于30°的山坡上豎立一根旗桿,當(dāng)太陽在山頂上方時(shí),從山腳看太陽的仰角是60°,旗桿此時(shí)在山坡上的影子長是25米,則旗桿高為( 。
A.25米B.12.5米C.22米D.30米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=-x1nx的圖象在點(diǎn)(1,f(1))處的切線的傾斜角為( 。
A.-1B.$\frac{π}{4}$C.-$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2lnx-ax,g(x)=x2,若函數(shù)f(x)在(2,f(2))處的切線與函數(shù)g(x)在(2,g(2))處的切線互相平行,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,A(-2,0),B(2,0),第一象限內(nèi)點(diǎn)C滿足∠ACB=60°,且△ABC的面積為$\sqrt{3}$.雙曲線Г以A、B為焦點(diǎn),經(jīng)過點(diǎn)C.
(1)求雙曲線的方程;
(2)直線l過點(diǎn)B與雙曲線右支交于M、N兩點(diǎn),且|AM|、|MN|、|AN|成等差數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且F1恰是QF2的中點(diǎn).若過A、Q、F2三點(diǎn)的圓恰好與直線l:x-$\sqrt{3}$y-3=0相切.
(1)求橢圓C的方程;
(2)設(shè)直線l1:y=x+2與橢圓C交于G、H兩點(diǎn).在x軸上是否存在點(diǎn)P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案