5.在一次隨機(jī)試驗(yàn)中,三個(gè)事件A1,A2,A3的概率分別為0.2,0.3,0.5,則下列說(shuō)法正確的個(gè)數(shù)是(  )
①A1+A2與A3是互斥事件,也是對(duì)立事件;
②A1+A2+A3是必然事件;
③P(A2+A3)=0.8;    
④P(A1+A2)≤0.5.
A.0B.1C.2D.3

分析 據(jù)三個(gè)事件A1、A2、A3不一定是互斥事件,從而P(A1+A2))≤0.5,P(A2+A3)≤0.8,P(A1+A2+A3)≤1即可得到結(jié)論

解答 解:三個(gè)事件A1、A2、A3不一定是互斥事件
故P(A1+A2)≤0.5,P(A2+A3)≤0.8,P(A1+A2+A3)≤1
A1+A2與A3不一定是互斥事件,也不一定是對(duì)立事件;
故④正確;
故選:B.

點(diǎn)評(píng) 本題主要考查了互斥事件和對(duì)立事件的概念,理清互斥事件和對(duì)立事件的區(qū)別與聯(lián)系是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$,(θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+φ)=0,(其中sinφ=$\frac{1}{3}$,cosφ=$\frac{2\sqrt{2}}{3}$).
(1)求曲線C在極坐標(biāo)系中的方程;
(2)求曲線C上到直線l距離最大的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在極坐標(biāo)中,已知點(diǎn)A的極坐標(biāo)為(2$\sqrt{2}$,$\frac{π}{4}$),圓E的極坐標(biāo)方程為ρ=4sinθ,則圓E的圓心與點(diǎn)A的距離為d=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知P是正方形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,且AB=PA,求:二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2-4ρcosθ+1=0,直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),點(diǎn)A的極坐標(biāo)為(2$\sqrt{3}$,$\frac{π}{6}$),設(shè)直線l與曲線C相交于P,Q兩點(diǎn).
(Ⅰ) 寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ) 求|AP|•|AQ|•|OP|•|OQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)已知cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,且$\frac{π}{6}$<α<$\frac{π}{2}$,求cosα;
(2)已知α,β都是銳角,且cosα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{\sqrt{10}}{10}$,求α+β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.計(jì)算arcsin(sin$\frac{3}{4}$π)=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.閱讀如圖所示程序框圖,若輸入的x=3,則輸出的y的值為(  )
A.24B.25C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知F是拋物線y2=2px(p>0)的焦點(diǎn),O為拋物線的頂點(diǎn),準(zhǔn)線與x軸的交點(diǎn)為M,點(diǎn)N在拋物線上.
(1)求直線MN的斜率的取值范圍,記λ=$\frac{{|{MN}|}}{{|{NF}|}}$,求λ的取值范圍;
(2)過(guò)點(diǎn)N的拋物線的切線交x軸于點(diǎn)P,則xN+xP是否為定值?
(3)在給定的拋物線上過(guò)已知定點(diǎn)P,給出用圓規(guī)與直尺作過(guò)點(diǎn)P的切線的作法.

查看答案和解析>>

同步練習(xí)冊(cè)答案