9.$\underset{lim}{n→∞}$$\frac{6-2+4-8+…+(-2)^{n+1}}{4+3+9+27+…+{3}^{n}}$=$\frac{32}{15}$.

分析 運用等比數(shù)列的求和公式,分別化簡原式的分子和分母,求得極限,再由原式的極限即可得到所求值.

解答 解:由6-2+4-8+…+(-2)n+1=6+$\frac{-2(1-(-2)^{n+1})}{1-(-2)}$
=6-$\frac{2}{3}$+$\frac{2}{3}$•(-2)n+1
則$\underset{lim}{n→∞}$($\frac{16}{3}$+$\frac{2}{3}$•(-2)n+1)=$\underset{lim}{n→∞}$$\frac{16}{3}$+$\frac{2}{3}$$\underset{lim}{n→∞}$(-2)n+1)=$\frac{16}{3}$+0=$\frac{16}{3}$;
由4+3+9+27+…+3n=4+$\frac{3(1-{3}^{n})}{1-3}$=$\frac{5}{2}$+$\frac{{3}^{n+1}}{2}$,
則$\underset{lim}{n→∞}$($\frac{5}{2}$+$\frac{{3}^{n+1}}{2}$)=$\underset{lim}{n→∞}$$\frac{5}{2}$+$\underset{lim}{n→∞}$$\frac{{3}^{n+1}}{2}$=$\frac{5}{2}$+0=$\frac{5}{2}$.
即有$\underset{lim}{n→∞}$$\frac{6-2+4-8+…+(-2)^{n+1}}{4+3+9+27+…+{3}^{n}}$=$\frac{\frac{16}{3}}{\frac{5}{2}}$=$\frac{32}{15}$.
故答案為:$\frac{32}{15}$.

點評 本題考查數(shù)列極限的求法,注意運用等比數(shù)列的求和公式和常見數(shù)列的極限,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(a+1)x+lnx,a∈R.
(1)若0<a<1,求f(x)的單調(diào)區(qū)間;
(2)若a=0,且f(x1)=f(x2),x1>x2,求證:x1•x2<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在圓的內(nèi)接四邊形ABCD中,AC平分∠BAD,EF切⊙O于C點,那么圖中與∠DCF相等的角的個數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解方程組:$\left\{\begin{array}{l}{({x}^{2}+1)({y}^{2}+1)=10}\\{(x+y)(xy-1)=3}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=$\frac{1}{2}$,2an=an-1+($\frac{1}{2}$)n,求通項公式和a7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax3+x2-ax(a∈R且a≠0).
(1)若函數(shù)f(x)在(-∞,-1)和($\frac{1}{3},-∞$)上是增函數(shù),在(-1,$\frac{1}{3}$)上是減函數(shù),求a的值;
(2)討論函數(shù)g(x)=$\frac{f(x)}{x}-\frac{3}{a}$lnx的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{1}{2a}$x2-lnx,其中a為大于0的常數(shù)
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間和極值
(2)當(dāng)x∈[1,2]時,不等式f(x)>2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=sinx-$\sqrt{3}$cosx(x∈[-π,0])的遞增區(qū)間是(  )
A.[-π,-$\frac{5π}{6}$]B.[-$\frac{5π}{6}$,-$\frac{π}{6}$]C.[-$\frac{π}{3}$,0]D.[-$\frac{π}{6}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在極坐標(biāo)系中,兩條曲線的極坐標(biāo)方程分別為ρ=1,ρ=2sin($\frac{π}{6}$-θ),它們相交于A,B兩點,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案