3.已知{an}為等比數(shù)列,設(shè)Sn為{an}的前n項(xiàng)和,若Sn=2an-1,則a6=( 。
A.32B.31C.64D.62

分析 由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,求出an,由此有求出結(jié)果.

解答 解:∵an}為等比數(shù)列,設(shè)Sn為{an}的前n項(xiàng)和,Sn=2an-1,
∴當(dāng)n=1時,a1=1,
當(dāng)n≥2時,an=2an-1,∴${a_n}={2^{n-1}}$,
∴${a}_{6}={2}^{5}=32$.
故選:A.

點(diǎn)評 本題考查等比數(shù)列中第6項(xiàng)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC中,a,b,c分別是角A,B,C的對邊,已知$\overrightarrow{m}$=(2sinA,-3),$\overrightarrow{n}$=(sinA,1+cosA),滿足$\overrightarrow{m}$⊥$\overrightarrow{n}$,且$\sqrt{7}$(c-b)=a.
(1)求角A的大;
(2)求cos(C-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PB⊥底面ABCD,底面ABCD為梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.
(Ⅰ)若點(diǎn)F為PD上一點(diǎn)且$PF=\frac{1}{3}PD$,證明:CF∥平面PAB;
(Ⅱ)求二面角B-PD-A的大;
(Ⅲ)在線段PD上是否存在一點(diǎn)M,使得CM⊥PA?若存在,求出PM的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.復(fù)數(shù)$\frac{2-i}{1+2i}$=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)R是圓心為Q的圓(x+$\sqrt{3}$)2+y2=16上的一個動點(diǎn),N($\sqrt{3}$,0)為定點(diǎn),線段RN的中垂線與直線QR交于點(diǎn)T,設(shè)T點(diǎn)的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)(1,0)做直線l與曲線C交于A,B兩點(diǎn),求A,B中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.等差數(shù)列{an}中,a2=1,a6=9,則{an}的前7項(xiàng)和S7=35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知拋物線和橢圓都經(jīng)過點(diǎn)M(1,2),它們在x軸上有共同焦點(diǎn),橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).則橢圓的焦點(diǎn)坐標(biāo)為(±1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow a=(2,-1)$,$\overrightarrow b=(3,1)$,則$2\overrightarrow a+3\overrightarrow b$=( 。
A.(12,1)B.(13,5)C.(13,-1)D.(13,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知M(-2,0),N(1,3a),P(0,-1),Q(a,-2a),若MN⊥PQ,則a=( 。
A.0B.1C.2D.0或1

查看答案和解析>>

同步練習(xí)冊答案