6.已知函數(shù)f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$處取得極值.
(1)確定a的值和f(x)的極值;
(2)若g(x)=f(x)ex,討論g(x)的單調(diào)性.

分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(-$\frac{4}{3}$)=0,求出a的值,從而求出函數(shù)的極值即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)對(duì)f(x)求導(dǎo)得f′(x)=3ax2+2x,
因?yàn)閒(x)在x=-$\frac{4}{3}$處取得極值,所以f′(-$\frac{4}{3}$)=0,
即3a•$\frac{16}{9}$+2×(-$\frac{4}{3}$)=$\frac{16a}{3}$-$\frac{8}{3}$=0,解得a=$\frac{1}{2}$,
∴f(-$\frac{4}{3}$)極大值=$\frac{16}{27}$,f(0)極小值=0.
(2)由(1)得g(x)=($\frac{1}{2}$x3+x2)ex,
故g′(x)=$\frac{1}{2}$x(x+1)(x+4)ex
令g′(x)=0,解得x=0或x=-1或x=-4.
當(dāng)x<-4時(shí),g′(x)<0,故g(x)為減函數(shù);
當(dāng)-4<x<-1時(shí),g′(x)>0,故g(x)為增函數(shù);
當(dāng)-1<x<0時(shí),g′(x)<0,故g(x)為減函數(shù);
當(dāng)x>0時(shí),g′(x)>0,故g(x)為增函數(shù).
綜上知,g(x)在(-∞,-4)和(-1,0)上為減函數(shù),
在(-4,-1)和(0,+∞)上為增函數(shù).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若經(jīng)過A(a,-1),B(2,3)的直線的斜率為2,則a等于( 。
A.0B.-1C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若直線(a+1)x-y+2=0與直線x+(a-1)y-1=0平行,則實(shí)數(shù)a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,P(1,m)是拋物線C上的一點(diǎn),且|PF|=2.
(1)若橢圓$C':\frac{x^2}{4}+\frac{y^2}{n}=1$與拋物線C有共同的焦點(diǎn),求橢圓C'的方程;
(2)設(shè)拋物線C與(1)中所求橢圓C'的交點(diǎn)為A、B,求以O(shè)A和OB所在的直線為漸近線,且經(jīng)過點(diǎn)P的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知${(x+\frac{2}{{\sqrt{x}}})^n}$的展開式前兩項(xiàng)二項(xiàng)式系數(shù)的和為9.
(1)求n的值.
(2)這個(gè)展開式中是否有常數(shù)項(xiàng)?若有,將它求出,若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,tanα=-$\frac{3}{4}$,cos(β-α)=$\frac{5}{13}$,則sinβ的值為$\frac{63}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,位于A處前方有兩個(gè)觀察站B,D,且△ABD為邊長(zhǎng)等于3km的正三角形,當(dāng)發(fā)現(xiàn)目標(biāo)出現(xiàn)于C處時(shí),測(cè)得∠BDC=45°,∠CBD=75°,則AC=( 。
A.15-6$\sqrt{3}$kmB.15+6$\sqrt{3}$kmC.$\sqrt{15+6\sqrt{3}}$kmD.$\sqrt{15-6\sqrt{3}}$km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.國(guó)家實(shí)行二孩生育政策后,為研究家庭經(jīng)濟(jì)狀況對(duì)生二胎的影響,某機(jī)構(gòu)在本地區(qū)符合二孩生育政策的家庭中,隨機(jī)抽樣進(jìn)行了調(diào)查,得到如下的列聯(lián)表:
經(jīng)濟(jì)狀況好經(jīng)濟(jì)狀況一般合計(jì)
愿意生二胎5050100 
不愿意生二胎2090110
合計(jì)70140210
(1)請(qǐng)完成上面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過1%的前提下認(rèn)為家庭經(jīng)濟(jì)狀況與生育二胎有關(guān)?
(2)若采用分層抽樣的方法從愿意生二胎的家庭中隨機(jī)抽取4個(gè)家庭,則經(jīng)濟(jì)狀況好和經(jīng)濟(jì)狀況一般的家庭分別應(yīng)抽取多少個(gè)?
(3)在(2)的條件下,從中隨機(jī)抽取2個(gè)家庭,求2個(gè)家庭都是經(jīng)濟(jì)狀況好的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)水平放置的平面圖形,用斜二測(cè)畫法畫出了它的直觀圖,此直觀圖恰好是一個(gè)邊長(zhǎng)為2的正方形,如圖所示,則原平面圖形的面積為(  )
A.4$\sqrt{3}$B.8C.8$\sqrt{3}$D.8$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案