(本題滿分13分)如圖所示,在矩形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),將△DEC沿CE折起到△D′EC的位置,使二面角D′—EC—B是直二面角.
(1)證明:BE⊥C D′;
(2)求二面角D′—BC—E的正切值.
(1)見解析; (2)
【解析】解:(1)∵AD=2AB=2,E是AD的中點(diǎn),
∴△BAE,△CDE是等腰直角三角形,
易知, ∠BEC=90°,即BE⊥EC.
又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,
∴BE⊥面D′EC,又C D′Ì 面D′EC , ∴BE⊥CD′;
(2)法一:設(shè)M是線段EC的中點(diǎn),過M作MF⊥BC垂足為F,連接D′M,D′F,則D′M⊥EC.
∵平面D′EC⊥平面BEC,
∴D′M⊥平面EBC,
∴MF是D′F在平面BEC上的射影,由三垂線定理得:
D′F⊥BC
∴∠D′FM是二面D′—BC—E的平面角.
在Rt△D′MF中,D′M=EC=,MF=AB=
∴
即二面角D′—BC—E的正切值為.
法二:如圖,以EB,EC為x軸、y軸,過E垂直于平面BEC的射線為z軸,建立空間直角坐標(biāo)系.
則B(,0,0),C(0,,0),D′(0,,)
設(shè)平面BEC的法向量為;平面D′BC的法向量為
Þ tan= ∴二面角D′—BC—E的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分) 如圖,某觀測(cè)站在城的南偏西的方向上,由城出發(fā)有一公路,走向是南偏東,在處測(cè)得距為31公里的公路上處,有一人正沿公路向城走去,走了20公里后,到達(dá)處,此時(shí)、間距離為公里,問此人還需要走多少公里到達(dá)城.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)如圖,在平行六面體中,,,,,,是的中點(diǎn),設(shè),,.
(1)用表示;
(2)求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆湖北省武漢市高二下期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱,,底面為直角梯形,其中BC∥AD, AB⊥AD, ,O為AD中點(diǎn).
(1)求直線與平面所成角的余弦值;
(2)求點(diǎn)到平面的距離
(3)線段上是否存在點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本題滿分13分)
如圖,在三棱柱中,已知,側(cè)面
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱(不包含端點(diǎn)上確定一點(diǎn)的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com