3.某校對學(xué)生的思想品德、學(xué)業(yè)成績、社會實(shí)踐能力進(jìn)行綜合評價(jià),思想品德、學(xué)業(yè)成績、社會實(shí)踐能力評價(jià)指數(shù)分別記為x,y,z,每項(xiàng)評價(jià)指數(shù)都為1分、2分、3分、4分、5分五等,綜合評價(jià)指標(biāo)S=x+y+z,若S≥13,則該學(xué)生為優(yōu)秀學(xué)生.現(xiàn)從該校學(xué)生中,隨機(jī)抽取10名學(xué)生作為樣本,分為A,B兩組,其評價(jià)指數(shù)列表如下:
                                                                A組
學(xué)生編號A1A2A3A4A5
評價(jià)指數(shù)(x,y,z)(3,4,3)(4,3,4)(4,4,2)(4,3,5)(4,5,4)
B組
學(xué)生編號 B1B2B3B4B5
評價(jià)指數(shù)(x,y,z)(3,5,3)(4,3,2)(5,4,4)(5,4,5)(4,5,3)
(1)從A,B兩組中各選一名學(xué)生,依次記為甲、乙,求乙的綜合評價(jià)指標(biāo)大于甲的綜合評價(jià)指標(biāo)的概率;
(2)若該校共有1500名學(xué)生,估計(jì)該校有多少名優(yōu)秀學(xué)生.

分析 (1)列舉法計(jì)算概率;
(2)用所選學(xué)生的優(yōu)秀率近似代替該校的學(xué)生優(yōu)秀率進(jìn)行估計(jì).

解答 解:(1)A組的5名學(xué)生綜合評價(jià)指標(biāo)分別為10,11,10,12,13,
B組的5名學(xué)生綜合評價(jià)指標(biāo)分別為11,9,13,14,12,
從A,B兩組中各選一名學(xué)生共有5×5=25種選法,
其中乙的綜合評價(jià)指標(biāo)大于甲的綜合評價(jià)指標(biāo)共有2+4+5+3=14種選法,
∴乙的綜合評價(jià)指標(biāo)大于甲的綜合評價(jià)指標(biāo)的概率為P=$\frac{14}{25}$.
(2)兩組的10名學(xué)生中優(yōu)秀學(xué)生共有3人,
∴該校共有優(yōu)秀學(xué)生大約1500×$\frac{3}{10}$=450人.

點(diǎn)評 本題考查了古典概型的概率計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“a>0”是“$a+\frac{2}{a}≥2\sqrt{2}$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知實(shí)數(shù)a,b滿足0<a<1,-1<b<1,則函數(shù)$y=\frac{1}{3}a{x^3}+a{x^2}+b$有三個(gè)零點(diǎn)的概率為$\frac{5}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,M為C上除長軸頂點(diǎn)外的一動(dòng)點(diǎn),以M為圓心,$\frac{{\sqrt{2}}}{2}$為半徑作圓,過原點(diǎn)O作圓M的兩條切線,A、B為切點(diǎn),當(dāng)M為短軸頂點(diǎn)時(shí)∠AOB=$\frac{π}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的右焦點(diǎn)為F,過點(diǎn)F作MF的垂線交直線x=$\sqrt{2}$a于N點(diǎn),判斷直線MN與橢圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某學(xué)校門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,若都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以2秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過1秒的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下面四個(gè)命題中,真命題是( 。
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每30分鐘從生產(chǎn)流水線中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣方法是系統(tǒng)抽樣;
②兩個(gè)變量的線性相關(guān)程度越強(qiáng),則相關(guān)系數(shù)的值越接近于1;
③兩個(gè)分類變量X與Y的觀測值κ2,若κ2越小,則說明“X與Y有關(guān)系”的把握程度越大;
④隨機(jī)變量X~N(0,1),則P(|X|<1)=2P(X<1)-1.
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=ex與g(x)=ax+b的圖象交于P(x1,y1),Q(x2,y2)兩點(diǎn).
(Ⅰ)求函數(shù)h(x)=f(x)-g(x)的最小值;
(Ⅱ)且PQ的中點(diǎn)為M(x0,y0),求證:f(x0)<a<y0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在(1+x3)(1-x)8的展開式中,x5的系數(shù)是( 。
A.-28B.-84C.28D.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,且an+12+an2=2(an+1an+an+1-an-$\frac{1}{2}$).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$<$\frac{7}{4}$;
(3)記Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,證明:對于一切n≥2,都有Sn2>2($\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+…+$\frac{{S}_{n}}{n}$).

查看答案和解析>>

同步練習(xí)冊答案