【題目】已知拋物線的焦點為F,直線與軸的交點為P,與C的交點為Q,且過F的直線與C相交于A、B兩點.
(1)求C的方程;
(2)設(shè)點且的面積為求直線的方程;
(3)若線段AB的垂直平分線與C相交于M、N兩點,且A、M、B、N四點在同一圓上,求直線的方程.
【答案】(1);(2)或;(3),或
【解析】
(1)設(shè)點的坐標(biāo)為,把點的坐標(biāo)代入拋物線的方程,求得,根據(jù)求得的值,可得的方程;
(2)設(shè)的方程為,代入拋物線方程化簡,利用韋達定理、弦長公式求得弦長,再求出點到直線的距離,利用的面積列方程求解即可;
(3)把直線MN的方程代入拋物線方程化簡,利用韋達定理、弦長公式求得.由于MN垂直平分線段AB,若MN的中點為H,故AMBN四點共圓等價于,由此求得m的值,可得直線的方程.
解:(1)設(shè)點的坐標(biāo)為,把點的坐標(biāo)代入拋物線,
可得,
點,
,
又,
,求得,或(舍去)。
故C的方程為.
(2)由題意可得,直線和坐標(biāo)軸不垂直,的焦點為,
設(shè)的方程為,代入拋物線方程得
,
顯然判別式,
AB的中點坐標(biāo)。
弦長
的方程為,即,
到直線的距離為,
解得,
故直線的方程為或
(3)因為線段AB的垂直平分線與C相交于M、N兩點,
設(shè)直線MN的方程為,
把線MN的方程代入拋物線方程可得,
,
故線段MN的中點H的坐標(biāo)為,
,
∵MN垂直平分線段AB,故AMBN四點共圓等價于,
,
化簡可得,
,
∴直線的方程為,或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在線段的兩端點各置一個光源,已知光源,的發(fā)光強度之比為,則線段上光照度最小的一點到,的距離之比為______(光學(xué)定律:點的光照度與到光源的距離的平方成反比,與光源的發(fā)光強度成正比)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有10名選手參加某項詩詞比賽,計分規(guī)則如下:比賽共有6道題,對于每一道題,10名選手都必須作答,若恰有個人答錯,則答對的選手該題每人得分,答錯選手該題不得分.比賽結(jié)束后,關(guān)于選手得分情況有如下結(jié)論:
①若選手甲答對6道題,選手乙答對5道題,則甲比乙至少多得1分:
②若選手甲和選手乙都答對5道題,則甲和乙得分相同;
③若選手甲的總分比其他選手都高,則甲最高可得54分
其中正確結(jié)論的個數(shù)是( )
A.0B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得25萬元~ 1600萬元的投資收益,現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,獎金不超過75萬元,同時獎金不超過投資收益的20%.(即:設(shè)獎勵方案函數(shù)模型為y=f (x)時,則公司對函數(shù)模型的基本要求是:當(dāng)x∈[25,1600]時,①f(x)是增函數(shù);②f (x) 75恒成立; 恒成立.
(1)判斷函數(shù)是否符合公司獎勵方案函數(shù)模型的要求,并說明理由;
(2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園內(nèi)有一塊以O為圓心半徑為20米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形OAB區(qū)域,其中兩個端點A,B分別在圓周上;觀眾席為等腰梯形ABQP內(nèi)且在圓O外的區(qū)域,其中,,且AB,PQ在點O的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺中心O處的距離都不超過60米(即要求).設(shè),.
(1)當(dāng)時求舞臺表演區(qū)域的面積;
(2)對于任意α,上述設(shè)計方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標(biāo)原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)性;
(2)若對定義域內(nèi)任意的,都恒成立,求a的取值范圍;
(3)記,若在區(qū)間內(nèi)有2個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1、2、3、4、5、6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為.
(1)設(shè)復(fù)數(shù)(為虛數(shù)單位),求事件“為實數(shù)”的概率;
(2)求點落在不等式組表示的平面區(qū)域內(nèi)(含邊界)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com