精英家教網 > 高中數學 > 題目詳情
9、已知命題p:|x-2|≥2;命題q:x∈Z.如果“p且q”與“?q”同時為假命題,則滿足條件的x的集合為
{1,2,3}
分析:由題設條件先求出命題P:x≥4或x≤0.由“p且q”與“?q”同時為假命題知0<x<4,x∈Z.由此能得到滿足條件的x的集合.
解答:解:由命題p:|x-2|≥2,得到命題P:x-2≥2或x-2≤-2,即命題P:x≥4或x≤0;
∵?q為假命題,∴命題q:x∈Z為真翕題.
再由“p且q”為假命題,知命題P:x≥4或x≤0是假命題.
故0<x<4,x∈Z.
∴滿足條件的x的集合為{1,2,3}.
故答案為:{1,2,3}.
點評:本題考查命題的真假判斷和應用,解題時要認真審題,仔細解答,注意公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知命題p:
x+2≥0
x-10≤0
命題q:1-m≤x≤1+m,m>0,若命題p是命題q的必要不充分條件,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:|x-2|<a(a>0),命題q:|x2-4|<1,若p是q的充分不必要條件,則實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:
x+2≥0
x-10≤0
,命題q:1-m≤x≤1+m,若p是q的必要不充分條件
,則實數m的取值范是
m≤3
m≤3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:x≥2;命題q:0<x<4,若命題p∨q是真命題,命題?q是真命題,則實數x的取值范圍是
 

查看答案和解析>>

同步練習冊答案