20.兩圓x2+y2=9和x2+y2-8x+6y+9=0的公切線(xiàn)條數(shù)是( 。
A.1條B.2條C.3條D.4條

分析 把兩圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,根據(jù)兩圓的圓心距小于半徑之和,可得兩圓相交,由此可得兩圓的公切線(xiàn)的條數(shù).

解答 解:圓x2+y2=9表示以(0,0)為圓心,半徑等于3的圓.
圓x2+y2-8x+6y+9=0即 (x-4)2+(y+3)2=16,表示以(4,-3)為圓心,半徑等于4的圓.
兩圓的圓心距等于$\sqrt{{4}^{2}+{3}^{2}}$=5,小于半徑之和,大于半徑差,故兩圓相交,故兩圓的公切線(xiàn)的條數(shù)為2,
故選B.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程的特征,兩圓的位置關(guān)系的確定方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知α,β為不重合的兩個(gè)平面,直線(xiàn)m?α,那么“m⊥β”是“α⊥β”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.函數(shù)f(x)的定義域?yàn)镽,并滿(mǎn)足以下條件:
①對(duì)任意的x∈R,有f(x)>0;
②對(duì)任意的x,y∈R,都有f(xy)=[f(x)]y;
③$f(\frac{1}{3})>1$.
(Ⅰ)求f(0)的值;
(Ⅱ)判斷并證明函數(shù)f(x)在R上的單調(diào)性;
(Ⅲ)解關(guān)于x的不等式:[f(x-1)](x+1)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知實(shí)數(shù)x,y滿(mǎn)足x•y>0,且x+y=-1,則$\frac{1}{x}+\frac{4}{y}$的最大值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在某次商品促銷(xiāo)活動(dòng)中,某人可得到4件不同的獎(jiǎng)品,這些獎(jiǎng)品要從40件不同的獎(jiǎng)品中隨機(jī)抽取決定,用系統(tǒng)抽樣的方法確定這個(gè)人所得到的4件獎(jiǎng)品的編號(hào),有可能的是( 。
A.3,9,15,11B.3,12,21,40C.8,20,32,40D.2,12,22,32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知斜三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為4的正三角形,側(cè)棱長(zhǎng)為5,點(diǎn)D,E,F(xiàn)分別是BB1,AA1,CC1,的中點(diǎn),若側(cè)棱AA1與底面三角形的相鄰兩邊都成60°角,則四棱錐D-A1C1EF的體積是(  )
A.$\frac{{20\sqrt{2}}}{3}$B.$\frac{{20\sqrt{3}}}{3}$C.$\frac{{50\sqrt{2}}}{9}$D.$\frac{{50\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{(6-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在區(qū)間(-∞,+∞)上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(1,6)B.[$\frac{6}{5}$,6)C.[1,$\frac{6}{5}$]D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在四棱錐P-ABCD中:ABCD是正方形,PA⊥平面ABCD,PA=AB=a.
(1)求二面角P-CD-A的大;
(2)求四棱錐P-ABCD的全面積;
(3)求C點(diǎn)到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.過(guò)雙曲線(xiàn)$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的右焦點(diǎn),傾斜角為30°的直線(xiàn)交雙曲線(xiàn)于A、B兩點(diǎn),求A,B兩點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案