2.已知等差數(shù)列{an}的公差d<0,且a3a5+a3a7+a5a9+a7a9=0,則當(dāng)前n項(xiàng)的和Sn取得最大值時(shí),n=5或6.

分析 a3a5+a3a7+a5a9+a7a9=0,因式分解為:(a5+a7)(a3+a9)=0,化為4a6=0,即可得出.

解答 解:∵a3a5+a3a7+a5a9+a7a9=0,
∴(a5+a7)(a3+a9)=0,
∴4a6=0,
解得a6=0,
又d<0,
∴當(dāng)前n項(xiàng)的和Sn取得最大值時(shí),n=5或6.
故答案為:5或6.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式性質(zhì)及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x2-2,對(duì)?x1∈[1,2],?x2∈[3,4],若f(x2)+a≥|f(x1)|恒成立,則實(shí)數(shù)a的取值范圍是[-12,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足$\frac{z}{1-i}=i$,其中i為復(fù)數(shù)單位,則z=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量的集合A={$\overrightarrow{m}$|$\overrightarrow{m}$=(x,y),x2+y2≤1}中的任意兩個(gè)向量$\overrightarrow{{m}_{1}}$,$\overrightarrow{{m}_{2}}$與兩個(gè)非負(fù)實(shí)數(shù)a,b,那么|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|與a+b的關(guān)系為( 。
A.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|>a+bB.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≤a+bC.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≥a+bD.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|<a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在四邊形ABCD中,cosB=$\frac{\sqrt{3}}{3}$,∠D=2∠B,AD=1,且△ACD的面積為$\sqrt{2}$
(1)求CD的長度;
(2)若BC=2$\sqrt{3}$,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式x2-(a2+3a)x+4>0對(duì)一切x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍(-4,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.秦九韶是我國古代數(shù)學(xué)家的杰出代表,他將一元n(n∈N*)次多項(xiàng)式的求值問題轉(zhuǎn)化為n個(gè)一次式的算法叫秦九韶算法.如果沒有秦九韶算法,人們?cè)诰幊糖骯xn(a≠0,1)值時(shí)需要設(shè)計(jì)n次乘法運(yùn)算,現(xiàn)在利用秦九韶算法編程求f(x)=(n+1)xn+nxn-1+…+2x+1,當(dāng)x=0.2的值時(shí),所需乘法運(yùn)算的次數(shù)比沒有秦九韶算法所需乘法運(yùn)算的次數(shù)少了( 。
A.$\frac{{n}^{2}+n}{2}$B.$\frac{{n}^{2}-n}{2}$C.$\frac{{n}^{2}+n-2}{2}$D.n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線mx-y-1=0與直線x-2y+3=0垂直,則m的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓E過定點(diǎn)A(a,0)(a>0),圓心E在拋物線C:y2=2ax上運(yùn)動(dòng),MN為圓E在y軸上截得的弦.
(Ⅰ)求證:不論圓心E如何變化,弦MN的長是個(gè)定值;
(Ⅱ)O為坐標(biāo)原點(diǎn),當(dāng)|OA|是|OM|與|ON|的等差中項(xiàng)時(shí),拋物線C的準(zhǔn)線與圓E有怎樣的位置關(guān)系?請(qǐng)說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案