3.對于函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$,有如下三個命題:
①f(x)的單調遞減區(qū)間為[2n-3,2n-2](n∈N*
②f(x)的值域為[0,+∞)
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內有3個不相等的實根
其中,真命題的個數(shù)是( 。
A.0B.1C.2D.3

分析 畫出函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$的圖象,數(shù)形結合分析三個命題的真假,可得答案.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$的圖象如下圖所示:

由圖可得:①f(x)的單調遞減區(qū)間為[2n-3,2n-2](n∈N*),故①正確;
②f(x)的值域為[0,+∞),故②正確;
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內至多有有2個不相等的實根,故③錯誤;
故選:C

點評 本題以命題的真假判斷與應用為載體,考查了函數(shù)的圖象,函數(shù)的值域,函數(shù)的根與方程的零點,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知長方體ABCD-A1B1C1D1的外接球O的體積為$\frac{32π}{3}$,其中BB1=2,則三棱錐O-ABC的體積的最大值為( 。
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=x2-cosx,對于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下條件:
①x1>x2;②x12>x22;③|x1|>x2;④x1+x2<0;⑤x1>|x2|.
其中能使f(x1)>f(x2)恒成立的條件序號是②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0)f(x)=Asin(ωx+φ)的部分圖象如圖所示,下列說法正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關于點$({-\frac{5π}{12},0})$對稱
C.將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位得到的函數(shù)圖象關于y軸對稱
D.函數(shù)f(x)的單調遞增區(qū)間是$[{kπ+\frac{7π}{12},kπ+\frac{13π}{12}}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若$\frac{cos2α}{{cos(α-\frac{π}{4})}}=-\frac{1}{2},則sinα-cosα$等于( 。
A.$-\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“0≤a<2”是“ax2+2ax+1>0的解集是實數(shù)集R”的( 。
A.充分而非必要條件B.必要而非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知點P(1,3),點Q(-1,2),點M為直線x-y+1=0上一動點,則|PM|+|QM|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知直線xcosθ-y+2=0,(θ∈R)的傾斜角為α,則α的取值范圍為$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若關于x的不等式ex-(a+1)x-b≥0(e為自然對數(shù)的底數(shù))在R上恒成立,則(a+1)b的最大值為( 。
A.e+1B.e+$\frac{1}{2}$C.$\frac{e}{2}$D.$\frac{e}{4}$

查看答案和解析>>

同步練習冊答案