14.已知函數(shù)f(x)=x2-cosx,對于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下條件:
①x1>x2;②x12>x22;③|x1|>x2;④x1+x2<0;⑤x1>|x2|.
其中能使f(x1)>f(x2)恒成立的條件序號是②.

分析 函數(shù)f(x)=x2-cosx為偶函數(shù),f′(x)=2x+sinx,從面臨是到函數(shù)f(x)在[0,$\frac{π}{2}$]上為單調(diào)增函數(shù),在[-$\frac{π}{2}$,0]上為減函數(shù).由此能求出結(jié)果.

解答 解:函數(shù)f(x)=x2-cosx為偶函數(shù),f′(x)=2x+sinx,
當0<x≤$\frac{π}{2}$時,0<sinx≤1,0<2x≤π,
∴f′(x)>0,函數(shù)f(x)在[0,$\frac{π}{2}$]上為單調(diào)增函數(shù),
由偶函數(shù)性質(zhì)知函數(shù)在[-$\frac{π}{2}$,0]上為減函數(shù).
當x12>x22時,得|x1|>|x2|≥0,
∴f(|x1|)>f(|x2|),
由函數(shù)f(x)在上[-$\frac{π}{2}$,$\frac{π}{2}$]為偶函數(shù)得f(x1)>f(x2),故②成立;
∵$\frac{π}{3}$>-$\frac{π}{3}$,而f($\frac{π}{3}$)=f(-$\frac{π}{3}$),
∴①不成立,同理可知③和⑤均不成立;
∵取x1=-$\frac{π}{3}$,x2=-$\frac{π}{2}$,滿足x1+x2<0,但f(x1)<f(x2),故④不成立.
故能使f(x1)>f(x2)恒成立的條件序號②.
故答案為:②.

點評 本題考查能使不等式恒成立的條件的判斷,是中檔題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD,E是邊SB的中點.
(1)求證:CE∥平面SAD;
(2)求二面角D-EC-B的余弦值大。
(3)求三棱錐S-ECD與四棱錐E-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知cos$\frac{4π}{5}cos\frac{7π}{15}-sin\frac{9π}{5}$sin$\frac{7π}{15}$=cos(x+$\frac{π}{2}$)cosx+$\frac{2}{3}$,則sin2x等于( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列幾何體的截面圖不可能是四邊形的是( 。
A.圓柱B.圓錐C.圓臺D.棱臺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知圓C:(x-6)2+(y-8)2=1和兩點A(0,m),B(0,-m)(m>0),若圓C上存在點P,使得∠APB=90°,則m的最小值為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,$f(\frac{x}{3})=\frac{1}{2}f(x)$,且當0≤x1<x2≤1時,有f(x1)≤f(x2),則$f(\frac{1}{2016})$=( 。
A.$\frac{1}{32}$B.$\frac{1}{64}$C.$\frac{1}{128}$D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點為(0,$\sqrt{3}$),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,離心率e=$\frac{1}{2}$,過橢圓右焦點F2的直線l與橢圓C交于M,N兩點.
(1)求橢圓C的方程;
(2)是否存在直線l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.對于函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$,有如下三個命題:
①f(x)的單調(diào)遞減區(qū)間為[2n-3,2n-2](n∈N*
②f(x)的值域為[0,+∞)
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內(nèi)有3個不相等的實根
其中,真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)是定義在(0,+∞)上的非負可導函數(shù),且滿足f(x)+xf'(x)≤0.對任意正數(shù)a、b,若a<b,則必有( 。
A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤bf(b)D.bf(b)≤af(a)

查看答案和解析>>

同步練習冊答案