【題目】【2017唐山模擬】如圖,ABCDA1B1C1D1為正方體,連接BD,AC1,B1D1, CD1,B1C,現(xiàn)有以下幾個結(jié)論:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是;④CB1與BD為異面直線,其中所有正確結(jié)論的序號為________.

【答案】 ①②④

【解析】 由題意可知,BD∥B1D1,又B1D1平面CB1D1,BD平面CB1D1,所以BD∥平面CB1D1

①正確;易知AC1⊥B1D1,AC1⊥B1C,又B1D1∩B1C=B1,所以AC1⊥平面CB1D1,

②正確;連接AC,因為CC1⊥平面ABCD,所以∠C1AC即為AC1與底面ABCD所成的角,

易知其正切值是,③錯誤;由異面直線的定義可知④正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm容器Ⅱ的兩底面對角線,的長分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm現(xiàn)有一根玻璃棒l其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)

(1)將放在容器Ⅰ中,的一端置于點A處另一端置于側(cè)棱上,沒入水中部分的長度;

(2)將放在容器Ⅱ中的一端置于點E處,另一端置于側(cè)棱上,求沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))

II)設(shè)函數(shù),當時,曲線有兩個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ≤a≤1,若函數(shù)f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函數(shù)表達式;
(2)判斷函數(shù)g(a)在區(qū)間[ ,1]上的單調(diào)性,并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017開封高三模擬理】如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點.將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點P,則三棱錐P-DCE的外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014高考課標2理數(shù)18】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,

E為PD的中點.

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率,過橢圓的左焦點且傾斜角為的直線與圓相交所得弦的長度為1.

(1)求橢圓的方程;

(2)若直線交橢圓于不同的兩點,設(shè), ,其中為坐標原點.當以線段為直徑的圓恰好過點時,求證: 的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生的身體素質(zhì)情況,現(xiàn)從我校學(xué)生中隨機抽取10人進行體能測試,測試的分數(shù)(百分制)如莖葉圖所示.根據(jù)有關(guān)國家標準,成績不低于79分的為優(yōu)秀,將頻率視為概率.

(1)另從我校學(xué)生中任取3人進行測試,求至少有1人成績是“優(yōu)秀”的概率;

(2)從前文所指的這10人(成績見莖葉圖)中隨機選取3人,記 表示測試成績?yōu)椤皟?yōu)秀”的學(xué)生人數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)為(
A.y=x3
B.y=lgx
C.y=|x|
D.y=x1

查看答案和解析>>

同步練習(xí)冊答案