7.若數(shù)列{an}滿足:存在正整數(shù)T,對(duì)于任意正整數(shù)n都有an+T=an成立,則稱(chēng)數(shù)列{an}為周期數(shù)列,周期為T(mén).已知數(shù)列{an}滿足a1=m(m>0),${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,若a3=4,則m的所有可能取值為( 。
A.{6,$\frac{5}{4}$}B.{6,$\frac{5}{4}$,$\frac{2}{5}$}C.{6,$\frac{5}{4}$,$\frac{1}{5}$}D.{6,$\frac{1}{5}$}

分析 對(duì)m分類(lèi)討論,利用遞推關(guān)系即可得出.

解答 解:數(shù)列{an}滿足a1=m(m>0),${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,a3=4,
①若m>2,則a2=m-1>1,∴a3=m-2=4,解得m=6.
②若m=2,則a2=m-1=1,∴a3=$\frac{1}{{a}_{2}}$=1≠4,舍去.
③若1<m<2,則a2=m-1∈(0,1),∴a3=$\frac{1}{m-1}$=4,解得m=$\frac{5}{4}$.
④若m=1,則a2=$\frac{1}{{a}_{1}}$=1,∴a3=$\frac{1}{{a}_{2}}$≠4,舍去.
⑤若0<m<1,則a2=$\frac{1}{{a}_{1}}$=$\frac{1}{m}$>1,∴a3=a2-1=$\frac{1}{m}$-1=4,解得m=$\frac{1}{5}$.
綜上可得:m∈$\{6,\frac{5}{4},\frac{1}{5}\}$.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、遞推關(guān)系,考查了分類(lèi)討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)F1、F2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線C的右支上,且滿足|F1F2|=2|OP|,|PF1|≥3|PF2|,則雙曲線C的離心率的取值范圍為( 。
A.(1,+∞)B.[$\frac{\sqrt{10}}{2}$,+∞)C.(1,$\frac{\sqrt{10}}{2}$]D.(1,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.拋擲兩枚骰子,當(dāng)至少有一枚5點(diǎn)或一枚6點(diǎn)出現(xiàn)時(shí),就說(shuō)這次試驗(yàn)成功,求在30次試驗(yàn)中成功次數(shù)X的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若命題“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命題,則實(shí)數(shù)k的取值范圍是(  )
A.(-∞,1]B.(-∞,e${\;}^{\frac{π}{2}}$]C.(1,e${\;}^{\frac{π}{2}}$)D.[e${\;}^{\frac{π}{2}}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)a=tan$\frac{π}{7}$,b=$\frac{π}{7}$,c=sin$\frac{π}{7}$,則a,b,c的大小關(guān)系是( 。
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:解答題

先化簡(jiǎn),再求值:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)y=$\frac{ax+1}{x-3}$的反函數(shù)是它本身,則a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.計(jì)算$(\frac{27}{8})^{-\frac{1}{3}}$-cosπ-$lo{g}_{2}({4}^{\frac{1}{3})}$+${{C}_{9}}^{7}$=37.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),P是橢圓C上一點(diǎn),且|PF2|=|F1F2|,直線PF1與圓x2+y2=$\frac{{c}^{2}}{4}$相切,則橢圓的離心率為(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案