【題目】已知曲線和曲線交于A,B兩點(點A在第二象限).過A作斜率為的直線交曲線M于點C(不同于點A),過點作斜率為的直線交曲線于E,F兩點,且.
(I)求的取值范圍;
(Ⅱ)設(shè)的面積為S,求的最大值.
【答案】(I).(Ⅱ)最大值.
【解析】
(I)由,結(jié)合之間的關(guān)系,即可求得的范圍;
(Ⅱ)設(shè)出直線,利用直線截圓的弦長公式,求得,以及;設(shè)出直線的方程,聯(lián)立拋物線方程,結(jié)合弦長公式,求得的面積,利用換元法,即可容易求得結(jié)果.
(I)由題意可知,,,
所以,所以.
因為,所以,即,
所以,又因為,所以.
(Ⅱ)設(shè)直線,即,
則點M到直線AC的距離,
所以.
所以.
設(shè)直線,
即,,,
則點B到直線EF的距離.
聯(lián)立,消去y得,
所以,,
所以.
所以的面積
.
因為,所以.
所以.
設(shè),則,所以,
所以
.
當且僅當,
此時,.
所以當,的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年起,新高考科目設(shè)置采用“”模式,普通高中學(xué)生從高一升高二時將面臨著選擇物理還是歷史的問題,某校抽取了部分男、女學(xué)生調(diào)查選科意向,制作出如右圖等高條形圖,現(xiàn)給出下列結(jié)論:
①樣本中的女生更傾向于選歷史;
②樣本中的男生更傾向于選物理;
③樣本中的男生和女生數(shù)量一樣多;
④樣本中意向物理的學(xué)生數(shù)量多于意向歷史的學(xué)生數(shù)量.
根據(jù)兩幅條形圖的信息,可以判斷上述結(jié)論正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長為,離心率為.
(1)求橢圓的方程;
(2)求過橢圓的右焦點且傾斜角為135°的直線,被橢圓截得的弦長;
(3)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.
(1)求拋物線的方程;
(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設(shè)的中點為,若、、四點共圓,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,以軸正半軸為極軸的極坐標中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標方程;
(2)若點的坐標為,圓與直線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是邊長為2的菱形,是的中點.
(1)證明:平面;
(2)設(shè)是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別是橢圓的左,右焦點,兩點分別是橢圓的上,下頂點,是等腰直角三角形,延長交橢圓于點,且的周長為.
(1)求橢圓的方程;
(2)設(shè)點是橢圓上異于的動點,直線與直分別相交于兩點,點,試問:的外接圓是否恒過軸上的定點(異于點)?若是,求該定點坐標;若否,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù),),以原點為極點,以軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線相交于,兩點,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com