1.已知角θ在第四象限,且|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,則$\frac{θ}{2}$是( 。
A.第三象限B.第四象限
C.第一象限或第三象限D.第二象限或第四象限

分析 先由角θ在第四象限,得到$\frac{θ}{2}$在第二,四象限,再由sin$\frac{θ}{2}$<0,得到結(jié)論.

解答 解:角θ在第四象限,
∴$\frac{θ}{2}$在第二,四象限,
∵|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,
∴sin$\frac{θ}{2}$<0,
∴$\frac{θ}{2}$在第四象限,
故選:B.

點(diǎn)評(píng) 本題考查了三角函數(shù)值的符號(hào),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對(duì)于線性相關(guān)系數(shù)r,敘述正確的是( 。
A.|r|∈(0,+∞),|r|越大,相關(guān)程度越大,反之相關(guān)程度越小
B.|r|≤1且|r|越接近1,相關(guān)程度越大;|r|越接近0,相關(guān)程度越小
C.r∈(-∞,+∞),r越大,相關(guān)程度越大,反之,相關(guān)程度越小
D.以上說法都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.過物線y2=4x上意一點(diǎn)P向圓(x-4)2+y2=2作切線,切點(diǎn)為A,則|PA|的最小值等于$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓O:x2+y2=4,兩個(gè)定點(diǎn)A(a,2),B(m,1),其中a∈R,m>0.P為圓O上任意一點(diǎn),且$\frac{PA}{PB}$=k(k為常數(shù)).
(1)求A,B的坐標(biāo)及常數(shù)k的值;
(2)過點(diǎn)E(a,t)作直線l與圓C:x2+y2=m交于M、N兩點(diǎn),若M點(diǎn)恰好是線段NE的中點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知6sin2α+sinαcosα-2cos2α=0,α∈(${\frac{π}{2}$,π),求:
①tanα的值;
②sin(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,sinA:sinB:sinC=2:3:4,則最小角的余弦值為( 。
A.$\frac{7}{8}$B.1C.$\frac{7}{9}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x∈{2,3,7},y∈{-31,-24,4},則xy可表示不同的值的個(gè)數(shù)是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從A點(diǎn)測(cè)得  M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=150m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐P-ABC的側(cè)棱的長(zhǎng)均為4,記三棱錐P-ABC三個(gè)側(cè)面的面積分別為S1,S2,S3,則當(dāng)S1+S2+S3取到最大值時(shí),三棱錐P-ABC外接球的表面積為48π.

查看答案和解析>>

同步練習(xí)冊(cè)答案