8.已知非空集合P滿足:①P⊆{1,2,3,4,5};②若a∈P,則6-a∈P,符合上述條件的集合P的個數(shù)是( 。
A.4B.5C.7D.31

分析 由條件列出集合的子集.

解答 解:∵非空集合P滿足:①P⊆{1,2,3,4,5},②若a∈P,則(6-a)∈P.
∴集合P可以有:{1,5},{2,4},{3},{1,5,2,4},{1,5,3},{2,4,3},{1,2,3,4,5}.
共有7個集合,
故選:C.

點評 本題考查了集合的子集的列舉方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點為F1,F(xiàn)2,點P在橢圓C上,且PF1⊥PF2,|PF1|=4,|PF2|=2.
(1)求橢圓的方程:
(2)若直線l:y=x+1與橢圓C的兩交點為A,B,求弦AB的中點M的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\left\{\begin{array}{l}{-x+6,x≤3}\\{2+lo{g}_{a}x,x>3}\end{array}\right.$(a>0且a≠1)的值域為[3,+∞),則實數(shù)a的取值范圍為1<a≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z=a+(a2-1)i(a∈R,i為虛數(shù)單位),且z<0,則復(fù)數(shù)$\frac{i}{z}$=( 。
A.iB.-iC.i或-iD.1-a2-ai

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒;…;第六組,成績大于等于18秒且小于等于19秒.如圖是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17秒的學(xué)生人數(shù)占全部總?cè)藬?shù)的百分比為x,成績大于等于15秒的學(xué)生人數(shù)為y,則從頻率分布直方圖中可分析出x和y分別為(  )
A.0.9,35B.0.9,40C.0.1,35D.0.1,45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)命題$p:?{x_0}∈R,{2^{x_0}}≤0$,則?p是( 。
A.$?{x_0}∈R,{2^{x_0}}≤0$B.$?{x_0}∈R,{2^{x_0}}>0$C.$?{x_0}∈R,{2^{x_0}}>0$D.$?{x_0}∈R,{2^{x_0}}≥0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.集合M={x|ax2+2x+1=0}中至多只有一個元素,則實數(shù)a的值為a≥1或a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,則滿足不等式f(a)<$\frac{1}{2}$的實數(shù)a的取值范圍為( 。
A.(-∞,-1)B.(-1,$\frac{\sqrt{2}}{2}$)∪($\sqrt{2}$,+∞)C.(-1,+∞)D.(-∞,-1)∪($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論錯誤的是( 。
A.命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題
B.命題p:?x∈[0,1],ex≥1;命q:?x∈R,x2+x+1<0,則p∨q為真
C.命題“?x∈R,2x>0”的否定是“?x0∈R,2x≤0”
D.“若am2<bm2,則a<b”的逆命題為真命題

查看答案和解析>>

同步練習(xí)冊答案