分析 根據(jù)已知結(jié)合韋達定理可得x1+x2=3,x1•x2=1,進而可得$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$;x${\;}_{1}^{2}$+$\frac{1}{{x}_{1}^{2}}$,x${\;}_{1}^{3}$+8x2的值.
解答 解:∵x1,x2是方程x2-3x+1=0的兩個實根,
∴x1+x2=3,x1•x2=1,
∴$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{1}•{x}_{2}}$=3,
x${\;}_{1}^{2}$+$\frac{1}{{x}_{1}^{2}}$=x${\;}_{1}^{2}$+${x}_{2}^{2}$=(x1+x2)2-2x1•x2=7,
x${\;}_{1}^{3}$+8x2=x${\;}_{1}^{3}$+[(x1+x2)2-x1•x2]x2=x${\;}_{1}^{3}$+x12•x2+x1•x22+x23=(x1+x2)3-2(x1+x2)•x1•x2=27-2×3×1=21,
故答案為:3,7,21
點評 本題考查的知識點是一元二次方程根與系數(shù)的關(guān)系(韋達定理),轉(zhuǎn)化思想,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x-4y+6=0 | B. | 3x-4y-6=0 | C. | 4x-3y+8=0 | D. | 4x+3y-8=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -$\frac{1}{9}$ | C. | -9 | D. | -$\frac{1}{9}$或-9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com