分析 (1)連接AO,DO,EO,利用線面垂直的判定定理證明:AO⊥平面EBC,利用四邊形ABFE是平行四邊形,證明ED∥AO,即可證明ED⊥平面EBC;
(2)利用V=VE-ABC+VE-BCDF求多面體ABCDEF的體積.
解答 (1)證明:連接AO,DO,EO,則
∵AB=AC,O為BC的中點,
∴AO⊥BC,
∵點E在底面ABC的射影為BC的中點O,
∴EO⊥平面ABC,
∵AO?平面ABC,∴EO⊥AO,
∵EO∩BC=O,AO⊥BC,EO⊥AO,
∴AO⊥平面EBC.
∵BC=2DF,O為BC的中點,
∴DF=BO
∵DF∥BC,
∴四邊形DFBO是平行四邊形,
∴BF∥DO,BF=DO
∵四邊形ABFE是平行四邊形,
∴BF∥AE,BF=AE,
∴BF∥DO,BF=DO,
∴四邊形AEDO是平行四邊形,
∴ED∥AO,AO⊥平面EBC,
∴ED⊥平面EBC;
(2)解:∵BC=2$\sqrt{2}$,∠BAC=90°,AB=AC,
∴AO=2,
∴DE=2.
∵DO=FB=2$\sqrt{2}$,
∴EO=2.
取DO的中點M,則EM⊥DO.
由(1)可知BO⊥平面EDO,∴BO⊥EM,
∵DO∩BO=O,
∴EM⊥平面DCDF,且EM=$\sqrt{2}$.
∴多面體ABCDEF的體積V=VE-ABC+VE-BCDF=$\frac{1}{3}×\frac{1}{2}×2\sqrt{2}×\sqrt{2}×2$+$\frac{1}{3}×\frac{1}{2}×(\sqrt{2}+2\sqrt{2})×2\sqrt{2}×\sqrt{2}$=$\frac{4}{3}$+2$\sqrt{2}$.
點評 本題考查線面垂直的判定,考查多面體ABCDEF的體積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 4 | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(2,+∞) | B. | (-2,2) | C. | (0,2) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 4 | C. | 8 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
B. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{8}$對稱 | |
C. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
D. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{8}$對稱 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com