10.已知定義在R上的函數(shù)f(x)滿足f(x-1)=f(1-x),且x≥0時,f(x)=2|x-m|-2,f(-1)=-1,則f(x)<0的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.(0,2)D.(-2,0)∪(0,2)

分析 先判斷函數(shù)是偶函數(shù),求出m的值,然后解不等式進行求解.

解答 解:∵f(x-1)=f(1-x),
∴f(x)為偶函數(shù),從而f(-1)=f(1)=1,
∴2|x-m|-2=-1,
∴m=1,
∴x≥0時,f(x)=2|x-1|-2,
∴當(dāng)2|x-1|-2<0時,解得0<x<2,
當(dāng)x<0時,解得-2<x<0,
綜上所述,則f(x)<0的解集為(-2,0)∪(0,2),
故選:D.

點評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性的定義和性質(zhì)求出m是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左右焦點,以線段F1F2為直徑的圓與雙曲線的漸近線的一個交點為P,且P在第一象限內(nèi),若|PF2|=2$\sqrt{3}$a,則雙曲線的離心率為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線y=x-2過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的焦點,則此雙曲線C的漸近線方程為(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=$±\sqrt{3}$xC.y=±$\frac{1}{3}$xD.y=±$\frac{\sqrt{5}}{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若復(fù)數(shù)z=$\frac{1-2i}{3-i}$(i為虛數(shù)單位),則z的模為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f是從集合A={1,2}到集合B={0,1,2,3,4}的映射,則滿足f(1)+f(2)=4的所有映射的個數(shù)為5個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知F1、F2分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點,過點F1的直線與雙曲線C的左、右兩支分別交于P、Q兩點,|F1P|、|F2P|、|F1Q|成等差數(shù)列,且∠F1PF2=120°,則雙曲線C的離心率是( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線為$y=\sqrt{3}x$,那么雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,多面體ABCDEF中,四邊形ABFE是平行四邊形,DF∥BC,BC=BF=2DF=2$\sqrt{2}$,∠BAC=90°,AB=AC,點E在底面ABC的射影為BC的中點O.
(1)證明:ED⊥平面EBC;
(2)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE=$\frac{1}{3}$BB1,C1F=$\frac{1}{3}$CC1
(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點,A1G與平面AEF交于H,且設(shè)$\overrightarrow{{A}_{1}H}$=$λ\overrightarrow{{A}_{1}G}$,求λ的值.

查看答案和解析>>

同步練習(xí)冊答案