9.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,a2+b2-c2=6$\sqrt{3}$-2ab,且C=60°,則△ABC的面積為$\frac{3}{2}$.

分析 由已知等式可得:c2=a2+b2-6$\sqrt{3}$+2ab,結(jié)合余弦定理可解得ab的值,利用三角形面積公式即可計算得解.

解答 解:∵a2+b2-c2=6$\sqrt{3}$-2ab,可得:c2=a2+b2-6$\sqrt{3}$+2ab,
又∵C=60°,由余弦定理可得:c2=a2+b2-2abcosC=a2+b2-ab,
∴-ab=2ab-6$\sqrt{3}$,解得:ab=2$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×2\sqrt{3}×\frac{\sqrt{3}}{2}$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點評 本題主要考查了余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1的各棱長為2,側(cè)面BCC1B1⊥底面ABC,∠B${\;}_{{1}_{\;}}$BC=60°,P為A1C1的中點.
(1)求證:BC⊥AB1;
(2)求二面角C1-B1C-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知斜率為2的直線l過點P(1,3),將直線l沿x軸向右平移m個單位得到直線l′,若點A(2,1)在直線l′上,則實數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為了解“網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響”做了一次調(diào)查,共調(diào)查了30名男同學(xué)、20名女同學(xué).調(diào)查的男生中有10人不喜歡玩電腦游戲,其余男生喜歡玩電腦游戲;而調(diào)查的女生中有5人喜歡玩電腦游戲,其余女生不喜歡電腦游戲.
(1)根據(jù)以上數(shù)據(jù)填寫如下2×2的列聯(lián)表:
性別
對游戲態(tài)度
男生女生合計
喜歡玩電腦游戲20525
不喜歡玩電腦游戲101525
合計302050
(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.005的前提下認為“喜歡玩電腦游戲與性別關(guān)系”?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y≤0}\\{x-1≥0}\end{array}\right.$,則z=x+2y的最大值為( 。
A.3B.$\frac{9}{2}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.-300°角終邊所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若平面向量$\overrightarrow{a}$,$\overrightarrow$滿足($\overrightarrow{a}$+$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)向量$\overrightarrow{a}$=(m,-1),$\overrightarrow$=(1,2),若$\overrightarrow{a}⊥\overrightarrow$,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.運行如圖所示程序框圖,輸出的S的值等于14.

查看答案和解析>>

同步練習(xí)冊答案