14.-300°角終邊所在的象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由終邊相同角的概念得:-300°=-360°+60°,由此可得答案.

解答 解:∵-300°=-360°+60°,
∴角-300°的終邊與60°的終邊相同,所在的象限為第一象限.
故選:A.

點評 本題考查象限角和軸線角,考查了終邊相同角的概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a,b,c滿足a<b<c,且ac<0,則下列不等關系中不滿足恒成立條件的是( 。
A.$\frac{b-c}{a}$>0B.$\frac{a}{c}$<$\frac{c}$C.$\frac{c-a}{ac}$<0D.$\frac{{c}^{2}}{a}$<$\frac{^{2}}{a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知函數(shù)f(x)=msin($\frac{π}{2}$x+$\frac{π}{4}$)(m>0)的圖象在y軸右側(cè)的最高點從左到右依次為B1、B2、B3、…,與x軸正半軸的交點從左到右依次為C1、C2、C3、….
(1)若m=1,求$\overrightarrow{O{B}_{1}}$•$\overrightarrow{{B}_{1}{C}_{1}}$;
(2)在△OB1C1,△OB2C3,△OB3C5,…,△OBiC2i-1,(i=1,2,3,…)中,有且只有三個銳角三角形,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知Sn為等差數(shù)列{an}的前n項和,a1=-1,S4=14,則a4等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,a2+b2-c2=6$\sqrt{3}$-2ab,且C=60°,則△ABC的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知向量$\overrightarrow{m}$=(1,2),$\overrightarrow{n}$=(-3,2),若k$\overrightarrow{m}$+$\overrightarrow{n}$和$\overrightarrow{m}$-3$\overrightarrow{n}$互相垂直,則實數(shù)k的值為( 。
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一系列對應值如表:
 x-$\frac{π}{6}$ $\frac{π}{3}$ $\frac{5π}{6}$ $\frac{4π}{3}$ $\frac{11π}{6}$ $\frac{7π}{3}$ $\frac{17π}{6}$
 y-1 1 3 1-1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式;
(2)對于區(qū)間[a,b],規(guī)定|b-a|為區(qū)間長度,根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)-f(kx+$\frac{π}{2}$)(k>0)在任意區(qū)間長度為$\frac{1}{10}$的區(qū)間上都能同時取到最大值和最小值,求正整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx.求:
(1)f(x)圖象的對稱中心的坐標;
(2)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有15名.

查看答案和解析>>

同步練習冊答案