精英家教網 > 高中數學 > 題目詳情

【題目】《九章算術》是我國古代數學經典名著,其中有這樣一個問題:今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長-尺.問這塊圓柱形木材的直徑是多少?現有長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結果保留整數)

注:l丈=10尺=100寸,,.

【答案】633

【解析】

由題意畫出圖形,求出圓柱的底面半徑,進一步求出弓形面積,代入體積公式得答案.

如圖所示:

(寸,則(寸(寸,

設圓的半徑為(寸,則(寸,

中,由勾股定理可得:,解得:(寸

,即,則

則弓形的面積(平方寸).

則算該木材鑲嵌在墻中的體積約為(立方寸).

故答案為:633.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】關于函數有下述四個結論:

是偶函數;的最大值為

個零點;在區(qū)間單調遞增.

其中所有正確結論的編號是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于正整數集合,如果任意去掉其中一個元素之后,剩余的所有元素組成的集合都能分為兩個交集為空集的集合,且這兩個集合的所有元素之和相等,就稱集合為“可分集合”.

1)判斷集合是否是“可分集合”(不必寫過程);

2)求證:五個元素的集合一定不是“可分集合”;

3)若集合是“可分集合”.

①證明:為奇數;

②求集合中元素個數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若曲線在點處的切線與直線平行,求的值;

2)在(1)條件下,求函數的單調區(qū)間和極值;

3)當,且時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列,定義為數列的一階差分數列,其中.

(1),試斷是否是等差數列,并說明理由;

(2)證明是等差數列,并求數列的通項公式;

(3)(2)中的數列,是否存在等差數列,使得對一切都成立,若存在,求出數列的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為梯形,AB//CD,,AB=AD=2CD=2,△ADP為等邊三角形.

(1)PB長為多少時,平面平面ABCD?并說明理由;

(2)若二面角大小為150°,求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,求不等式的解集;

(2)若不等式的解集為空集,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為),M為該曲線上的任意一點.

1)當時,求M點的極坐標;

2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數方程為t為參數),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρsin2θ4cosθ

1)求直線l的普通方程與曲線C的直角坐標方程;

2)若直線lx軸的交點為F,直線l與曲線C的交點為A、B,求|FA|+|FB|的值.

查看答案和解析>>

同步練習冊答案