已知函數(shù)f(x)=x2+2alnx,a∈R.
(Ⅰ)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=
2
x
+f(x)在[1,2]上是減函數(shù),求a的取值范圍.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)f′(x)=2x+
2a
x
=
2x2+2a
x
,由f'(2)=1,能求出a,再求出f(1),f′(1),由點斜式寫出切線方程;
(Ⅱ)由g(x)=
2
x
+x2+2aln x得g′(x)=-
2
x2
+2x+
2a
x
,建立新函數(shù),求出其最小值,解出即可.
解答: 解:(Ⅰ)f′(x)=2x+
2a
x
=
2x2+2a
x

由已知f′(2)=1,解得a=-3.…(2分)
所以f(x)=x2-6lnx,f′(x)=2x-
6
x
,因為f′(1)=-4,f(1)=1,
所以函數(shù)f(x)的圖象在點(1,f(1))處的切線方程為y-1=-4(x-1),即4x+y-5=0.…(6分)
(Ⅱ)由g(x)=
2
x
+x2+2aln x得g′(x)=-
2
x2
+2x+
2a
x
,…(7分)
因為函數(shù)g(x)為[1,2]上的單調(diào)減函數(shù),
則g′(x)≤0在[1,2]上恒成立,即-
2
x2
+2x+
2a
x
≤0在[1,2]上恒成立.
即a≤
1
x
-x2
在[1,2]上恒成立.…(9分)
令h(x)=
1
x
-x2
,在[1,2]上h′(x)=-
1
x2
-2x=-(
1
x2
+2x)<0,
所以h(x)在[1,2]上為減函數(shù),h(x)min=h(2)=-
7
2
,所以a≤-
7
2
.…(12分)
點評:本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,滲透了數(shù)形結(jié)合思想,是一道綜合題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.函數(shù)f(x)在y軸左側(cè)的圖象如圖所示.
(1)寫出函數(shù)f(x),x∈R的解析式;
(2)若函數(shù)g(x)=f(x)-2ax+2,x∈[1,2],求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,函數(shù)y=
x+4
2-x-4
的定義域為集合A,B={x|-3≤x-1<2}.
(Ⅰ)求A∩B,(∁UA)∪(∁UB);
(Ⅱ)若集合M={x|x≥k+1或x≤k-1},且A∩B⊆M,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={1,2},集合B={1,3,5},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=1,前n項和Sn滿足條件
S2n
Sn
=
4n+2
n+1
(n∈N*)

(1)求數(shù)列{an}的通項公式;  
(2)記bn=an2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ax-lnx.
(1)若a=1,試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)令g(x)=
f(x)
ex
,若函數(shù)g(x)在區(qū)間(0,1]上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x,x≤0
ax,x>0
,若f(1)=f(-1),則實數(shù)a的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lna-ln(x+1)(其中a為常數(shù),e為自然對數(shù)底),函數(shù)y=f(x)在A(0,a)處的切線與y=g(x)在B(0,lna)處的切線互相垂直.
(Ⅰ) 求f(x),g(x)的解析式;
(Ⅱ) 求證:對任意n∈N*,f(n)+g(n)>2n;
(Ⅲ) 設(shè)y=g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1與C2相交于P、Q,過PQ中點垂直于x軸的直線分別交C1、C2于M、N,問是否存在實數(shù)b,使得C1在M處的切線與C2在N處的切線平行?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,B1C與AD1所成的角的度數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案