18.國家規(guī)定個人稿費納稅辦法如下:不超過800元的不納稅;超過800元而不超過4000元的按超過800元部分的14%納稅;超過4000元的按全部稿費的11%納稅,設(shè)扣稅前應得稿費為x元,應納稅額為y元.
(1)求y關(guān)于x的函數(shù)解析式;
(2)已知某作家出版一本書,共納稅420元,求他的稿費是多少元?

分析 (1)根據(jù)題意求出稿費的函數(shù)表達式;
(2)利用納稅420元,求出這個人應得稿費(扣稅前).

解答 解:(1)設(shè)扣稅前應得稿費為x元,則應納稅額為分段函數(shù),由題意得
y=$\left\{\begin{array}{l}{x,x≤800}\\{(x-800)×14%,800<x≤4000}\\{11%•x,x>4000}\end{array}\right.$.
(2)如果稿費為4000元應納稅為448元,現(xiàn)知某人共納稅420元,所以稿費應在800~4000元之間,
∴(x-800)×14%=420,
∴x=3800,即他的稿費是3800元.

點評 本題考查分段函數(shù)及其應用,考查學生分析問題解決問題的能力,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=(2-a)lnx+\frac{1}{x},g(x)=2ax$,
(1)當a=0時,求f(x)的極值;
(2)若F(x)=f(x)+g(x)對任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|F(x1)-F(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a^{x-6}},x>7}\end{array}}\right.$,數(shù)列{an}滿足:an=f(n)(n∈N*),且對于任意的正整數(shù)m,n,都有$\frac{{{a_m}-{a_n}}}{m-n}>0$,則實數(shù)a的取值范圍是(2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.計算求值:
(1)64${\;}^{\frac{1}{3}}$-(-$\frac{2}{3}$)0+$\root{3}{125}$+lg2+lg50+2${\;}^{1+lo{g}_{2}3}$
(2)lg14-2lg$\frac{7}{3}$+lg7-lg18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知α為第二象限角,且$cosα=-\frac{3}{5}$,則tanα的值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在等比數(shù)列{an}中,a3a9=196,a5+a7=35,則公比q=$±2或±\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知方程$\frac{x^2}{k+1}+\frac{y^2}{3-k}=1$(k∈R)表示雙曲線,則k的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.比較大。海ㄌ睿,>,=)
$tan(-\frac{13π}{4})$>$tan(-\frac{17π}{5})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知f:A→B的映射,
(1)若滿足任意a,b∈A,且a≠b,必有f(a)≠f(b),則稱f:A→B的映射為Q-型映射;
(2)若滿足任意d∈B,必存在c∈A,使得f(c)=d,則稱f:A→B的映射為Z-型映射,
則下列映射既是Q-型映射又是Z-型映射的是①③④.
①f:x→y=2x+1,A=R,B=R;
②f:x→y=x2+2x-3,A=R+,B=[-3,+∞);
③f:x→y=$\sqrt{2x-1}$,A=[1,2],B=[1,$\sqrt{3}$];
④f:x→y=$\frac{2x-1}{x+3}$,A={x|x≠-3},B={y|y≠2};
⑤f:x→y=|x-4|,A=R,B=R.

查看答案和解析>>

同步練習冊答案