17.設(shè)等比數(shù)列{an}的公比為q,前n項和為Sn,則“q=1”是“S6=3S2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 S6=3S2,q=1時,6a1=3×2a1恒成立.q≠1時,$\frac{{a}_{1}({q}^{6}-1)}{q-1}$=$3×\frac{{a}_{1}({q}^{2}-1)}{q-1}$,解得q即可判斷出結(jié)論.

解答 解:∵S6=3S2,∴q=1時,6a1=3×2a1恒成立.
q≠1時,$\frac{{a}_{1}({q}^{6}-1)}{q-1}$=$3×\frac{{a}_{1}({q}^{2}-1)}{q-1}$,
化為:q4+q2+1=3,即q4+q2-2=0,
解得q2=1,解得q=-1.
綜上可得:“q=1”是“S6=3S2”的充分不必要條件.
故選:A.

點評 本題考查了等比數(shù)列的求和公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)$f(x)=\frac{{{e^x}-1}}{x}$,
(1)求f(x)在x=1處的切線方程;
(2)證明:對任意a>0,當(dāng)0<|x|<ln(1+a)時,|f(x)-1|<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知sinα=$\frac{4}{5}$,$\frac{π}{2}$<α<π,則sin2α=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.f(x)=|x-2017|+|x-2016|+…+|x-1|+|x+1|+…+|x+2016|+|x+2017|,在不等式e2017x≥ax+1(x∈R)恒成立的條件下等式f(2018-a)=f(2017-b)恒成立,求b的取值集合(  )
A.{b|2016≤b≤2018}B.{2016,2018}C.{2018}D.{2017}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)全集U=R,集合A={y|y=x2-2},B={x|y=log2(3-x),則(∁UA)∩B=( 。
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<-2}D.{x|x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=($\frac{1}{2}$)x,g(x)=|log3(x-1)|,則方程f(x)-g(x)=0的實根個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級.某品牌飲料公司對微商銷售情況進行中期調(diào)研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ)若銷售金額(單位:萬元)不低于平均值$\overline x$的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(Ⅱ)從隨機抽取的6家微商中再任取2家舉行消費者回訪調(diào)查活動,求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知奇函數(shù)f(x)=$\left\{\begin{array}{l}{3^x}-a,({x≥0})\\ g(x),({x<0})\end{array}$,則f(-2)的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1.
(1)證明:2a+b=2;
(2)若a+2b≥tab恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案