9.“?x∈R,x2-2>0”的否定是(  )
A.?x∈R,x2-2<0B.?x∈R,x2-2≤0
C.?x0∈R,x${\;}_{0}^{2}$-2<0D.?x0∈R,x${\;}_{0}^{2}$-2≤0

分析 根據(jù)全稱命題的否定是特稱命題進(jìn)行判斷即可.

解答 解:命題是全稱命題,則命題的否定是特稱命題,
即?x0∈R,x${\;}_{0}^{2}$-2≤0,
故選:D.

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,△ABO三邊上的點(diǎn)C、D、E都在⊙O上,已知AB∥DE,AC=CB.
(l)求證:直線AB與⊙O相切;
(2)若AD=2,且tan∠ACD=$\frac{1}{3}$,求AO的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示的平面圖形是邊長(zhǎng)為8的正三角形,沿三邊中點(diǎn)連線向同一方向折成一個(gè)多面體.
(1)請(qǐng)畫(huà)出沿虛線折起拼接后的多面體,并寫(xiě)出它的名稱;
(2)求該多面體側(cè)面與底面所成二面角的余弦值;
(3)求該多面體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,C上一點(diǎn)(3,m)到焦點(diǎn)的距離為5.
(1)求C的方程;
(2)過(guò)F作直線l,交C于A、B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為-1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}中,a1=1,(n+1)an+1=2(a1+a2+…+an)(n∈N+),則數(shù)列{an}的通項(xiàng)公式是(  )
A.an=$\frac{n+1}{3}$B.an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{n+2}{4},n≥2}\end{array}\right.$
C.an=$\frac{n+1}{2}$D.an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{n+1}{3},n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在正方體ABCD-A1B1C1D1中,若棱長(zhǎng)AB=3,則點(diǎn)B到平面ACD1的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.執(zhí)行如圖所示的程序框圖,若輸入p的值是6,則輸出S的值是$\frac{31}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積是$\frac{\sqrt{3}}{3}$,表面積是$\sqrt{3}$+1+$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案