1.若直線y=kx-2與拋物線y2=8x交于A、B兩點,且AB中點的橫坐標(biāo)為2,則此直線的斜率是2.

分析 直線y=kx-2代入拋物線y2=8x,利用AB的中點的橫坐標(biāo)為2,結(jié)合韋達(dá)定理,求出k的值.

解答 解:∵直線y=kx-2與拋物線y2=8x交于兩點,
∴k≠0.
由直線y=kx-2與拋物線y2=8x,消去y,得k2x2-4kx-8x+4=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=$\frac{4k+8}{{k}^{2}}$=4,解得k=-1或k=2.
而當(dāng)k=-1時,方程k2x2-4kx-8x+4=0只有一個解,即A、B兩點重合,
∴k≠-1.
∴k=2.
故答案為:2.

點評 本題考查拋物線的性質(zhì),考查直線與拋物線的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.點P(tan2015°,cos2016°)位于的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=4sinx+acosx的最大值為5,則常數(shù)a=±3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知一定點A(4,-3),B為圓(x+1)2+y2=4上的動點,求線段AB中點M的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x+1|.
(1)解不等式f(x)-f(x-1)≤1;
(2)若a>0,求證:f(ax)-af(x)≤f(-$\frac{1}{2}$a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項和為Sn
(Ⅰ)求an及Sn;
(Ⅱ) 令${b_n}=\frac{n+1}{S_n^2}(n∈{N^*})$,證明:對于任意的n∈N*,數(shù)列{bn}的前n項和${T_n}<\frac{5}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某人有5把鑰匙,其中2把能打開門,現(xiàn)隨機取1把鑰匙試著開門,不能開門就扔掉,現(xiàn)采用隨機模擬的方法估計第三次才能打開門的概率:先由計算器產(chǎn)生1~5之間的整數(shù)隨機數(shù),1,2表示能打開門,3,4,5表示打不開門,再以每三個數(shù)一組,代表三次開門的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),453,254,341,134,543,523,452,324,534,435,535,314,245,531,351,354,345,413,425,553據(jù)此估計,該人第三次才打開門的概率(  )
A.0.2B.0.25C.0.15D.0.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某幾何體的三視圖如圖所示.則該幾何體的體積是90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a>0,b>0,且a+b=1.
(Ⅰ)求ab的最大值;
(Ⅱ)求證:$({a+\frac{1}{a}})({b+\frac{1}})≥\frac{25}{4}$.

查看答案和解析>>

同步練習(xí)冊答案