【題目】已知函數(shù)y=1﹣3sinx
(1)畫出上述函數(shù)的圖象
(2)求上述函數(shù)的最大值、最小值和周期,并求這個函數(shù)取最大值、最小值的x值的集合.

【答案】
(1)解:列表為:

x

0

π

sinx

0

1

0

﹣1

0

y=1﹣3sinx

1

﹣2

1

4

1

畫出圖形,如圖:


(2)解:∵﹣1≤sinx≤1,

∴函數(shù)y=1﹣3sinx的最大值是4,最小值是﹣2,周期為2π,

當(dāng)y取最大值時x的集合為{x|x= +2kπ,k∈Z}.

當(dāng)y取最小值時x的集合為{x|x= +2kπ,k∈Z}


【解析】(1)根據(jù)五點做出函數(shù)的簡圖,即可得到結(jié)論.(2)根據(jù)正弦函數(shù)的圖象與性質(zhì)作答.
【考點精析】掌握正弦函數(shù)的奇偶性和五點法作函數(shù)y=Asin(ωx+φ)的圖象是解答本題的根本,需要知道正弦函數(shù)為奇函數(shù);描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有Sn=an+n﹣3成立.

(Ⅰ)求證:{an﹣1}為等比數(shù)列;

(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1 , BD的中點.
(1)求證:EF∥平面ABC1D1;
(2)AA1=2 ,求異面直線EF與BC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京市的士收費辦法如下:不超過2公里收7元(即起步價7元),超過2公里的里程每公里收2.6元,另每車次超過2公里收燃油附加費1元(不考慮其他因素).相應(yīng)收費系統(tǒng)的流程圖如圖所示,則①處應(yīng)填(
A.y=7+2.6x
B.y=8+2.6x
C.y=7+2.6(x﹣2)
D.y=8+2.6(x﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人射擊一次命中7~10環(huán)的概率如下表

命中環(huán)數(shù)

7

8

9

10

命中概率

0.16

0.19

0.28

0.24

計算這名射手在一次 射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

() 證明:當(dāng),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左右焦點,為原點, 在橢圓上,線段軸的交點滿足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓右焦點作直線交橢圓于兩點,交軸于點,若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費用為萬元時,銷售量萬件滿足(其中 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為萬元/萬件.

(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,己知棱長為a,M,N分別是BD和AD的中點,則B1M與D1N所成角的余弦值為(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

同步練習(xí)冊答案