16.已知集合A={x|-2x2+x+1<0},則∁RA=( 。
A.$\left\{{x|-\frac{1}{2}<x<1}\right\}$B.$\left\{{x|-1<x<\frac{1}{2}}\right\}$C.$\left\{{x|-\frac{1}{2}≤x≤1}\right\}$D.$\left\{{x|-1≤x≤\frac{1}{2}}\right\}$

分析 解一元二次不等式化簡(jiǎn)集合A,則∁RA的答案可求.

解答 解:由集合A={x|-2x2+x+1<0}={x|$x<-\frac{1}{2}$或x>1},
則∁RA={x|$-\frac{1}{2}≤x≤1$}.
故選:C.

點(diǎn)評(píng) 本題考查了補(bǔ)集及其運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2-3x+5,求f(-3)、f(1)、f($\sqrt{5}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.關(guān)于x的方程x2+(a+1)x+a+b+1=0(a≠0,a、b∈R)的兩實(shí)根為x1,x2,若0<x1<1<x2<2,則$\frac{a}$的取值范圍是(-$\frac{5}{4}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知f(x)=|x+1|+|x-a|為偶函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,已知曲線${C_1}:\left\{\begin{array}{l}x\;=cosα\\ y=si{n^2}α\end{array}\right.$(α為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ.
(l)求曲線C1與C2的交點(diǎn)M的直角坐標(biāo);
(2)設(shè)點(diǎn)A,B分別為曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a、b、c成公差為2的等差數(shù)列,且5sinA=3sinB,則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)集合A={x|a-3<x<a+3},B={x|x<-1或x>3}.
(1)若a=3,求A∪B;
(2)若A∪B=R,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.△ABC中,$cosA=\frac{{\sqrt{5}}}{5},sinB=\frac{3}{5}$,則cosC=$\frac{2\sqrt{5}}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在等比數(shù)列{an}中,已知a1=3,an=48,Sn=93,則n的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案