8.已知函數(shù)f(x)=2cosx(sinx+cosx).
(Ⅰ)求f($\frac{3π}{4}$);
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

分析 (I)代入化簡(jiǎn)即可得出;
(II)化簡(jiǎn)再利用三角函數(shù)的周期性與單調(diào)性即可得出.

解答 解:(Ⅰ)f($\frac{3π}{4}$)=$2cos\frac{3π}{4}$$(sin\frac{3π}{4}+cos\frac{3π}{4})$=$2×(-\frac{\sqrt{2}}{2})(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2})$=0;
(Ⅱ)∵f(x)=2sinxcosx+2cos2x
=sin2x+cos2x+1
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1
$\frac{2π}{2}$=π,
故函數(shù)f(x)的最小正周期為π.
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z.
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)、倍角公式與和差化積公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.空間四點(diǎn)A,B,C,D滿(mǎn)足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=3$\sqrt{6}$,|$\overrightarrow{DA}$|=7,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=(x-a)2+1在(-∞,3)上是減函數(shù),則a與3的大小關(guān)系是a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)向量$\overrightarrow{a}$=(5,n),且|$\overrightarrow{a}$|=13,則n=±12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知點(diǎn)E、F、G分別為正方形ABCD中邊AB、BC、CD的中點(diǎn),H為CG中點(diǎn),現(xiàn)沿AF、AG、GF折疊,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為B,在三棱錐B-AFG中.
(1)證明:EH∥平面AFG;
(2)證明:AB⊥平面BFG;
(3)若正方形的邊長(zhǎng)為2,求四棱錐F-AGHE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R且滿(mǎn)足a>b>c,f(1)=0.
(Ⅰ)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點(diǎn);
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)二次函數(shù),且滿(mǎn)足f(0)=1,f(x+1)-f(x)=2x.
(1)求解析式f(x);
(2)討論f(x)在[0,a]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,一組平行直線(xiàn)的斜率是$\frac{3}{2}$
(1)這組直線(xiàn)何時(shí)與橢圓相交?
(2)當(dāng)它們與橢圓相交時(shí),求它們中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.?dāng)?shù)列{an}中a1=2,an+1=2an,Sn為{an}的前n項(xiàng)和,若Sn=126,則n=(  )
A.6B.4C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案