【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+x2 .
(1)求f(x)在R上的解析式;
(2)當(dāng)x∈[m,n](0<m<n)時(shí),若f(x)的值域?yàn)閇3m2+2m﹣1,3n2+2n﹣1],求實(shí)數(shù)m,n的值.
【答案】
(1)解:當(dāng)x>0時(shí),f(x)=x3+x2,
故當(dāng)x<0時(shí),則﹣x>0,f(﹣x)=(﹣x)3+(﹣x)2=﹣x3+x2,
由于f(x)是奇函數(shù),則f(x)=﹣f(﹣x)=x3﹣x2,
又f(0)=0,
故當(dāng)x∈R時(shí),
(2)解:∵當(dāng)x>0時(shí),f(x)=x3+x2,
∴f'(x)=3x2+2x>0,
∴f(x)在[m,n]上單調(diào)遞增,
∴ ∴ ,
∴m,n為x3﹣2x2﹣2x+1=0的兩個(gè)正實(shí)數(shù)根,
∵x3﹣2x2﹣2x+1=(x+1)(x2﹣3x+1),
∴m,n為x2﹣3x+1=0的兩個(gè)正實(shí)數(shù)根,
又由題意可知:0<m<n,
∴ ,
【解析】(1)設(shè)x<0,則-x>0,代入解析式f(﹣x)=(﹣x)3+(﹣x)2=﹣x3+x2,根據(jù)奇函數(shù)f(-x)=-f(x),從而得到f(x)的解析式,(2)假設(shè)存在滿足條件的m,n,則m,n必為方程x3﹣2x2﹣2x+1=0的兩個(gè)正實(shí)數(shù)根,即可求出結(jié)果.
【考點(diǎn)精析】掌握函數(shù)的值域是解答本題的根本,需要知道求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)D是橢圓C: =1(a>b>0)上一點(diǎn),F(xiàn)1 , F2分別為C的左、右焦點(diǎn),|F1F2|=2 ,∠F1DF2=60°,△F1DF2的面積為
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)Q(1,0)的直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1 , k2 , 當(dāng)k1k2最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC所在的平面內(nèi),點(diǎn)P0、P滿足 = , ,且對(duì)于任意實(shí)數(shù)λ,恒有 ,則( )
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c.向量 =(a, b), =(sinB,﹣cosA),且 ⊥ .
(1)求A的大小;
(2)若| |= ,求cosC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)n≥3,n∈N* , 在集合{1,2,…,n}的所有元素個(gè)數(shù)為2的子集中,把每個(gè)子集的較大元素相加,和記為a,較小元素之和記為b.
(1)當(dāng)n=3時(shí),求a,b的值;
(2)求證:對(duì)任意的n≥3,n∈N* , 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)上單調(diào)遞增的是( )
A.y=ln|x﹣1|
B.y=x2﹣|x|
C.
D.y=ex+e﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=ex(ex﹣ax﹣1)且f(x)≥0恒成立.
(1)求實(shí)數(shù)a的值;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0 , 且 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿足f(x)=8+ (千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿足g(x)=143﹣|x﹣22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天純收入的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問(wèn)該村在兩年內(nèi)能否收回全部投資成本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+ +2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com