【題目】設(shè)f(x)=ex(ex﹣ax﹣1)且f(x)≥0恒成立.
(1)求實(shí)數(shù)a的值;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0 , 且

【答案】
(1)解:f(x)=ex(ex﹣ax﹣1)≥0,因?yàn)閑x>0,所以ex﹣ax﹣1≥0恒成立,

令φ(x)=ex﹣ax﹣1,x∈R,問題等價(jià)φ(x)≥0恒成立,

∴φ'(x)=ex﹣a,

當(dāng)a≤0時(shí),φ(x)在x∈R單調(diào)遞增,又φ(0)=0當(dāng)x∈(﹣∞,0)時(shí),φ(x)<0矛盾,

當(dāng)a>0時(shí),φ(x)在(﹣∞,lna)單調(diào)遞減,在(lna,+∞)單調(diào)遞增,

∴φ(x)≥0恒成立,等價(jià)為φ(lna)=elna﹣alna﹣1≥0,即a﹣alna﹣1≥0,

又令g(a)=a﹣alna﹣1,(a>0),g'(a)=1﹣lna﹣1=﹣lna,

∴g(a)在(0,1)單調(diào)遞增,在(1,+∞)單調(diào)遞減,而g(1)=0,

所以不等式a﹣alna﹣1≥0的解為a=1,綜上a=1


(2)證明:f'(x)=ex(2ex﹣x﹣2),令h(x)=2ex﹣x﹣2,h'(x)=2ex﹣1,

所以h(x)在 單調(diào)遞減,在 單調(diào)遞增 ,

由零點(diǎn)存在定理及h(x)的單調(diào)性知,方程h(x)=0在 有唯一根,

設(shè)為x0 ,從而h(x)有兩個(gè)零點(diǎn)x0和0,

所以f(x)在(﹣∞,x0)單調(diào)遞增,在(x0,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增,

從而f(x)存在唯一的極大值點(diǎn)x0即證,

,

取等不成立,所以 得證,

又∵ 在(﹣∞,x0)單調(diào)遞增

所以 得證,

從而且 成立


【解析】(1)由題意不難得出ex﹣ax﹣1≥0恒成立,令φ(x)=ex﹣ax﹣1,x∈R,問題等價(jià)φ(x)≥0恒成立,通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,得到關(guān)于a的不等式,解出即可;(2)令h(x)=2ex﹣x﹣2,根據(jù)h ( 2 ) h ( l n ) < 0 由零點(diǎn)存在定理及h(x)的單調(diào)性知,方程h(x)=0在 ( 2 , l n ) 有唯一根,設(shè)為x0且 2 e x 0 x 0 2 = 0 ,從而證明結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)既是奇函數(shù)又在(0,+∞)上單調(diào)遞減的是( )
A.f(x)=x4
B.
C.
D.f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,且a≠1,函數(shù)f(x)=ax﹣1,g(x)=﹣x2+xlna.
(1)若a>1,證明函數(shù)h(x)=f(x)﹣g(x)在區(qū)間(0,+∞)上是單調(diào)增函數(shù);
(2)求函數(shù)h(x)=f(x)﹣g(x)在區(qū)間[﹣1,1]上的最大值;
(3)若函數(shù)F(x)的圖象過原點(diǎn),且F′(x)=g(x),當(dāng)a>e 時(shí),函數(shù)F(x)過點(diǎn)A(1,m)的切線至少有2條,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+x2
(1)求f(x)在R上的解析式;
(2)當(dāng)x∈[m,n](0<m<n)時(shí),若f(x)的值域?yàn)閇3m2+2m﹣1,3n2+2n﹣1],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=ax+2與曲線y=f(x)交于A、B兩點(diǎn),其中A是切點(diǎn),記h(x)= ,g(x)=f(x)﹣ax,則下列判斷正確的是( )

A.h(x)只有一個(gè)極值點(diǎn)
B.h(x)有兩個(gè)極值點(diǎn),且極小值點(diǎn)小于極大值點(diǎn)
C.g(x)的極小值點(diǎn)小于極大值點(diǎn),且極小值為﹣2
D.g(x)的極小值點(diǎn)大于極大值點(diǎn),且極大值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點(diǎn) ,離心率為 , 為坐標(biāo)原點(diǎn).
(I)求橢圓 的方程.
(II)若點(diǎn) 為橢圓 上一動(dòng)點(diǎn),點(diǎn) 與點(diǎn) 的垂直平分線l交 軸于點(diǎn) ,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+c,g(x)=aex的圖象的一個(gè)公共點(diǎn)為P(2,t),且曲線y=f(x),y=g(x)在P點(diǎn)處有相同的切線,若函數(shù)f(x)﹣g(x)的負(fù)零點(diǎn)在區(qū)間(k,k+1)(k∈Z)內(nèi),則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 .假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問:乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領(lǐng)海的分界線,一艘巡邏艇在O處發(fā)現(xiàn)了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點(diǎn)的軌跡;
(2)若O與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船(即不能截獲走私船的區(qū)域與公海不想交).則O,A之間的最遠(yuǎn)距離是多少海里?

查看答案和解析>>

同步練習(xí)冊(cè)答案