1.函數(shù)y=x|x|+px2,x∈R,下列說法正確的是( 。
A.偶函數(shù)B.奇函數(shù)C.不具有奇偶函D.奇偶性與p有關(guān)

分析 由題意可得當(dāng)p=0時(shí),函數(shù)f(x)=x|x|為奇函數(shù),當(dāng)p≠0時(shí),函數(shù)f(x)=x|x|+px2 為非奇非偶函數(shù),從而得出結(jié)論.

解答 解:∵函數(shù)y=f(x)=x|x|+px2,x∈R,f(-x)=-x|x|+px2,
故當(dāng)p=0時(shí),函數(shù)f(x)=x|x|為奇函數(shù),
當(dāng)p≠0時(shí),函數(shù)f(x)=x|x|+px2 為非奇非偶函數(shù),
故函數(shù)y的奇偶性與p有關(guān),
故選:D.

點(diǎn)評 本題主要考查函數(shù)的奇偶性的定義,函數(shù)的奇偶性的判斷方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若f(x+1)=2f(x),則f(x)的解析式可以是( 。
A.f(x)=2xB.f(x)=2xC.f(x)=x+2D.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)0<a≤$\frac{5}{4}$,若滿足不等式|x-a|<b的一切實(shí)數(shù)x,亦滿足不等式|x-a2|<$\frac{1}{2}$,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖正方體中,O,O1為底面中心,以O(shè)O1所在直線為旋轉(zhuǎn)軸,線段BC1形成的幾何體的正視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}≤a}\\{x≥0.y≥0}\end{array}\right.$,若z=$\frac{x+2y+3}{x+1}$的最小值為$\frac{3}{2}$,則a的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$,若對任意實(shí)數(shù)b,使方程f(x)-b=0只有一解,則a的取值集合是{0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“a,b∈R+”是$\frac{a+b}{2}$≥$\sqrt{ab}$的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|12-5x-2x2>0},B={x|x2-ax+b≤0}滿足A∩B=∅,A∪B=(-4,8],求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+$\frac{a}{x}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=2時(shí),且函數(shù)f(x)滿足f(x1)=f(x2)(x1≠x2),求證x1+x2>4.
(參考公式:[ln(m-x)]'=$\frac{1}{x-m}$,m為常數(shù))

查看答案和解析>>

同步練習(xí)冊答案