精英家教網 > 高中數學 > 題目詳情

【題目】如圖,D、E分別是△ABC的三等分點,設 = , = ,∠BAC=
(1)用 , 分別表示 , ;
(2)若 =15,| |=3 ,求△ABC的面積.

【答案】
(1)解: = + =2 , = + =﹣ +2
(2)解: = =15,| |=3| |=3 ,

∴| |= ,∴ =33,

=(2 )(﹣ +2 )=9,

∴| || |= =18,

∴SABC= =


【解析】(1)利用向量的線性運算,即可用 , 分別表示 , ;(2)若 =15,| |=3 ,求出| || |= =18,即可求△ABC的面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PC⊥平面ABC,∠ACB=45°,BC=2 ,AB=2.
(1)求AC的長;
(2)若PC= ,點M在側棱PB上,且 = ,當λ為何值時,二面角B﹣AC﹣M的大小為30°.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小王為了鍛煉身體,每天堅持“健步走”,并用計步器進行統(tǒng)計.小王最近8天“健步走”步數的頻數分布直方圖(圖1)及相應的消耗能量數據表(表1)如下:

健步走步數(前步)

16

17

18

19

消耗能量(卡路里)

400

440

480

520

(Ⅰ)求小王這8天“健步走”步數的平均數;
(Ⅱ)從步數為17千步,18千步,19千步的幾天中任選2天,求小王這2天通過“健步走”消耗的能量和不小于1000卡路里的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于(
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點O是平面上一定點,A、B、C是平面上△ABC的三個頂點,∠B、∠C分別是邊AC、AB的對角,以下命題正確的是(把你認為正確的序號全部寫上). ①動點P滿足 = + + ,則△ABC的重心一定在滿足條件的P點集合中;
②動點P滿足 = +λ( + )(λ>0),則△ABC的內心一定在滿足條件的P點集合中;
③動點P滿足 = +λ( + )(λ>0),則△ABC的重心一定在滿足條件的P點集合中;
④動點P滿足 = +λ( + )(λ>0),則△ABC的垂心一定在滿足條件的P點集合中;
⑤動點P滿足 = +λ( + )(λ>0),則△ABC的外心一定在滿足條件的P點集合中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知△ABC三個頂點坐標為A(7,8),B(10,4),C(2,﹣4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓M的圓心在直線y=﹣2x上,且圓M與直線x+y﹣1=0相切于點P(2,﹣1).
(1)求圓M的方程;
(2)過坐標原點O的直線l被圓M截得的弦長為 ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了考查培育的某種植物的生長情況,從試驗田中隨機抽取100柱該植物進行檢測,得到該植物高度的頻數分布表如下:

組序

高度區(qū)間

頻數

頻率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合計

100

1.00

(Ⅰ)寫出表中①②③④處的數據;
(Ⅱ)用分層抽樣法從第3、4、5組中抽取一個容量為6的樣本,則各組應分別抽取多少個個體?
(Ⅲ)在(Ⅱ)的前提下,從抽出的容量為6的樣本中隨機選取兩個個體進行進一步分析,求這兩個個體中至少有一個來自第3組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求函數的最小值;

(2)若函數上單調,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案