【題目】如圖,D、E分別是△ABC的三等分點,設(shè) = , = ,∠BAC= .
(1)用 , 分別表示 , ;
(2)若 =15,| |=3 ,求△ABC的面積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PC⊥平面ABC,∠ACB=45°,BC=2 ,AB=2.
(1)求AC的長;
(2)若PC= ,點M在側(cè)棱PB上,且 = ,當(dāng)λ為何值時,二面角B﹣AC﹣M的大小為30°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王為了鍛煉身體,每天堅持“健步走”,并用計步器進(jìn)行統(tǒng)計.小王最近8天“健步走”步數(shù)的頻數(shù)分布直方圖(圖1)及相應(yīng)的消耗能量數(shù)據(jù)表(表1)如下:
健步走步數(shù)(前步) | 16 | 17 | 18 | 19 |
消耗能量(卡路里) | 400 | 440 | 480 | 520 |
(Ⅰ)求小王這8天“健步走”步數(shù)的平均數(shù);
(Ⅱ)從步數(shù)為17千步,18千步,19千步的幾天中任選2天,求小王這2天通過“健步走”消耗的能量和不小于1000卡路里的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點O是平面上一定點,A、B、C是平面上△ABC的三個頂點,∠B、∠C分別是邊AC、AB的對角,以下命題正確的是(把你認(rèn)為正確的序號全部寫上). ①動點P滿足 = + + ,則△ABC的重心一定在滿足條件的P點集合中;
②動點P滿足 = +λ( + )(λ>0),則△ABC的內(nèi)心一定在滿足條件的P點集合中;
③動點P滿足 = +λ( + )(λ>0),則△ABC的重心一定在滿足條件的P點集合中;
④動點P滿足 = +λ( + )(λ>0),則△ABC的垂心一定在滿足條件的P點集合中;
⑤動點P滿足 = +λ( + )(λ>0),則△ABC的外心一定在滿足條件的P點集合中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC三個頂點坐標(biāo)為A(7,8),B(10,4),C(2,﹣4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓M的圓心在直線y=﹣2x上,且圓M與直線x+y﹣1=0相切于點P(2,﹣1).
(1)求圓M的方程;
(2)過坐標(biāo)原點O的直線l被圓M截得的弦長為 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了考查培育的某種植物的生長情況,從試驗田中隨機抽取100柱該植物進(jìn)行檢測,得到該植物高度的頻數(shù)分布表如下:
組序 | 高度區(qū)間 | 頻數(shù) | 頻率 |
1 | [230,235) | 14 | 0.14 |
2 | [235,240) | ① | 0.26 |
3 | [240,245) | ② | 0.20 |
4 | [245,250) | 30 | ③ |
5 | [250,255) | 10 | ④ |
合計 | 100 | 1.00 |
(Ⅰ)寫出表中①②③④處的數(shù)據(jù);
(Ⅱ)用分層抽樣法從第3、4、5組中抽取一個容量為6的樣本,則各組應(yīng)分別抽取多少個個體?
(Ⅲ)在(Ⅱ)的前提下,從抽出的容量為6的樣本中隨機選取兩個個體進(jìn)行進(jìn)一步分析,求這兩個個體中至少有一個來自第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的最小值;
(2)若函數(shù)在上單調(diào),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com