【題目】已知正四棱錐的底面邊長是2,側(cè)棱長是,則該正四棱錐的全面積為_____

【答案】12

【解析】

根據(jù)正四棱錐的特點,可知側(cè)面是全等的等腰三角形,求出斜高可得側(cè)面積,結(jié)合底面積可得全面積.

如圖在正四棱錐S﹣ABCD中,O為底面正方形的中心,E為BC的中點,連接OE,SO,SE,

則SO⊥平面ABCD,又BC平面ABCD,所以BC⊥SO,

在三角形ABC中,O,E分別為AC,BC的中點,所以OE∥AB,又因為AB⊥BC,所以BC⊥OE.

又OE∩SO=O,所以BC⊥平面SOE,因為SE平面SOE,

所以SE⊥BC,即SE為側(cè)面SBC的斜高,

三角形SBE為直角三角形,所以SE= =2.

所以該正四棱錐的全面積S=SABCD+4×SSBC=2×2+4×=4+8=12.

故答案為:12.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的中心在原點,焦點在坐標軸上,焦距為2.一雙曲線和該橢圓有公共焦點,且雙曲線的實半軸長比橢圓的長半軸長小4,雙曲線離心率與橢圓離心率之比為73,求橢圓和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“活水圍網(wǎng)”養(yǎng)魚技術具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當時,的值為2千克/年;當時,的一次函數(shù);當時,因缺氧等原因,的值為0千克/年.

(1)當時,求關于的函數(shù)表達式.

(2)當養(yǎng)殖密度為多少時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像關于直線對稱,且.

1)求的表達式;

2)若將圖像上各點的橫坐標變?yōu)樵瓉淼?/span>,再將所得圖像向右平移個單位,得到的圖像,且關于的方程在區(qū)間上有且只有一個實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行,來自151個國家和地區(qū)的3617家企業(yè)參展,規(guī)模和品質(zhì)均超過首屆.更多新產(chǎn)品、新技術、新服務“全球首發(fā),中國首展”,專(業(yè))精(品)尖(端)特(色)產(chǎn)品精華薈萃.某跨國公司帶來了高端空調(diào)模型參展,通過展會調(diào)研,中國甲企業(yè)計劃在2020年與該跨國公司合資生產(chǎn)此款空調(diào).生產(chǎn)此款空調(diào)預計全年需投入固定成本260萬元,每生產(chǎn)x千臺空調(diào),需另投入資金萬元,且.經(jīng)測算生產(chǎn)10千臺空調(diào)需另投入的資金為4000萬元.由調(diào)研知,每臺空調(diào)售價為0.9萬元時,當年內(nèi)生產(chǎn)的空調(diào)當年能全部銷售完.

(1)求2020年的企業(yè)年利潤(萬元)關于年產(chǎn)量x(千臺)的函數(shù)關系式;

(2)2020年產(chǎn)量為多少(千臺)時,企業(yè)所獲年利潤最大?最大年利潤是多少?注:利潤=銷售額–成本

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之數(shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設計的,那么在兩個判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù),且),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.

(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標方程化為直角坐標方程;

(2)求曲線與曲線交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(1)求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),共中

1)判斷,的奇偶性并證明:

2)證明,函數(shù)上單調(diào)遞增;

3)若不等式對任成恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案