【題目】已知函數(shù),共中

1)判斷,的奇偶性并證明:

2)證明,函數(shù)上單調(diào)遞增;

3)若不等式對(duì)任成恒成立,求的取值范圍.

【答案】1)見詳解;(2)見詳解;(3

【解析】

(1) 根據(jù)題意先求出函數(shù)的定義域,判斷是否關(guān)于原點(diǎn)對(duì)稱,再表達(dá)出,找出的關(guān)系,即可判斷并證明出的奇偶性;

(2) 根據(jù)單調(diào)性的定義,在定義域內(nèi)任取,設(shè),證明即可。

(3) 根據(jù)函數(shù)的奇偶性,將不等式轉(zhuǎn)化成,再根據(jù)(2),再將不等式轉(zhuǎn)化為,利用分離參數(shù)法得到,構(gòu)造新函數(shù)令,求出的最大值即可求出的取值范圍。

(1) 由題意得,函數(shù)的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,

,滿足奇函數(shù)的定義,故函數(shù)為奇函數(shù)。

(2) 證:任取,設(shè),可得,將代入函數(shù)式作差得,

即當(dāng)時(shí),

所以,函數(shù)上單調(diào)遞增。

(3) 不等式對(duì)任意恒成立,即

對(duì)任意恒成立,

為R上的奇函數(shù),

對(duì)任意恒成立,

由(2)知函數(shù)上單調(diào)遞增,

對(duì)任意恒成立

對(duì)任意恒成立,即的最大值即可,

再令,可得,且

,可變?yōu)?/span>,

易知上單調(diào)遞減,

上的最大值為-1,

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的底面邊長是2,側(cè)棱長是,則該正四棱錐的全面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只紅螞蟻與一只黑螞蟻在一個(gè)單位圓(半徑為1的圓)上爬動(dòng),若兩只螞蟻均從點(diǎn)A1,0)同時(shí)逆時(shí)針勻速爬動(dòng),若紅螞蟻每秒爬過α角,黑螞蟻每秒爬過β角(其中αβ180°),如果兩只螞蟻都在第14秒時(shí)回到A點(diǎn),并且在第2秒時(shí)均位于第二象限,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列每對(duì)集合之間的關(guān)系:

1,

2,

3,

4是對(duì)角線相等且互相平分的四邊形,是有一個(gè)內(nèi)角為直角的平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式ax23x+4b的解集為[a,b],則ba________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn)

(1)求橢圓的方程;

(2)求的取值范圍;

(3)若直線不過點(diǎn),求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐的四個(gè)側(cè)面的面積中最大的是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)m,n∈R,恒有f(mn)=f(mf(n)(f(m)≠0,f(n)≠0),且當(dāng)x>0時(shí),0<f(x)<1.

(1)求證f(0)=1;

(2)求證x∈R時(shí),恒有f(x)>0;

(3)求證f(x)在R上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案