【題目】如圖,△ABC中,,ABED是邊長為1的正方形,平面ABED⊥底面ABC,若G,F(xiàn)分別是EC,BD的中點(diǎn).
(1)求證:GF∥底面ABC;
(2)求證:AC⊥平面EBC;
(3)求幾何體ADEBC的體積V.
【答案】(1) 見解析;(2)見解析 ;(3).
【解析】
(1)連接,根據(jù)是正方形,推出是的中點(diǎn),結(jié)合是的中點(diǎn),即可證明∥底面;(2)易證,根據(jù)平面平面,推出平面,從而可得,根據(jù)勾股定理可知,即可證明平面;(3)取的中點(diǎn),連接,根據(jù),推出,,根據(jù)平面平面,推出平面,即可求得幾何體的體積.
(1)證明:連接AE,如下圖所示.
∵ADEB為正方形,
∴AE∩BD=F,且F是AE的中點(diǎn),
又G是EC的中點(diǎn),
∴GF∥AC,又AC平面ABC,GF平面ABC,
∴GF∥平面ABC.
(2)證明:∵ADEB為正方形,∴EB⊥AB,
又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB平面ABED,
∴BE⊥平面ABC,∴BE⊥AC.
又∵AC=BC=AB,
∴CA2+CB2=AB2,
∴AC⊥BC.
又∵BC∩BE=B,∴AC⊥平面BCE.
(3)取AB的中點(diǎn)H,連GH,∵BC=AC=AB=,
∴CH⊥AB,且CH=,又平面ABED⊥平面ABC
∴CH⊥平面ABC,∴V=×1×=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的導(dǎo)函數(shù)y=f '(x)的圖象如圖所示, 其中-3,2,4是f '(x)=0的根, 現(xiàn)給出下列命題:
(1) f(4)是f(x)的極小值;
(2) f(2)是f(x)極大值;
(3) f(-2)是f(x)極大值;
(4) f(3)是f(x)極小值;
(5) f(-3)是f(x)極大值.
其中正確的命題是 ________________.(填上正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F,過點(diǎn)F的直線交y軸于點(diǎn)N,交橢圓C于點(diǎn)A、P(P在第一象限),過點(diǎn)P作y軸的垂線交橢圓C于另外一點(diǎn)Q.若 .
(1)設(shè)直線PF、QF的斜率分別為k、k',求證: 為定值;
(2)若 且△APQ的面積為 ,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實(shí)數(shù)a的取值范圍是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)當(dāng)a=0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時,若f(x)>0對任意x∈(0,π)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圓錐的體積為,圓的直徑,點(diǎn)C是的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn).
(1)求該圓錐的側(cè)面積;
(2)求異面直線PB與CD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一臺機(jī)器由于使用時間較長,生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 4 | 12 | 8 |
每小時生產(chǎn)有缺損零件數(shù)y(個) | 11 | 9 | 8 | 5 |
(1)作出散點(diǎn)圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實(shí)際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在(﹣∞,0)內(nèi)單調(diào)遞增的為( )
A.y=x4+2x
B.y=2|x|
C.y=2x﹣2﹣x
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn).
(1)求橢圓方程;
(2)設(shè)不過原點(diǎn)O的直線,與該橢圓交于P、Q兩點(diǎn),直線OP、OQ的斜率依次為,滿足,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com