1.因式分解:a7-ab6

分析 提取公因式,然后利用立方和公式分解因式即可.

解答 解:a7-ab6=a(a6-b6)=a(a3-b3)(a3+b3)=a(a-b)(a+b)(a2+ab+b2)(a2-ab+b2).

點評 本題考查因式分解定理的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.博鰲亞洲論壇2015年會員大會于3月27日在海南博鰲舉辦,大會組織者對招募的100名服務(wù)志愿者培訓(xùn)后,組織一次APEC知識競賽,將所得成績制成如右頻率分布直方圖(假定每個分?jǐn)?shù)段內(nèi)的成績均勻分布),組織者計劃對成績前20名的參賽者進行獎勵.
(1)試確定受獎勵的分?jǐn)?shù)線;
(2)從受獎勵的20人中選3人在主會場服務(wù),記3人中成績在90分以上的人數(shù)為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x+y)+f(x-y)=2f(x)f(y)對一切實數(shù)x,y成立,且f(0)≠0,則函數(shù)f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù),又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=xn-mlnx-1,其中n∈N*,n≥2,m≠0.
(1)當(dāng)n=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m=1時,討論函數(shù)f(x)的零點情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)若f(x0)=$\frac{11}{5}$,x0∈[${\frac{π}{4}$,$\frac{π}{2}}$],求sin(2x0-$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,其它四個側(cè)面都是側(cè)棱長為$\sqrt{5}$的等腰三角形.
(Ⅰ)求二面角P-AB-C的大;
(Ⅱ)在線段AB上是否存在一點E,使平面PCE⊥平面PCD?若存在,請指出點E的位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若n階行列式D的每行的前n-1個元素之和為1,而后n-1個元素之和為3,求D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=alnx-$\frac{1}{2}$x2+kx,其中a∈R,k∈R且a≠0.
(I)若k=0,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)a=1,若函數(shù)f(x)存在兩個零點x1,x2(x1<x2),且x0=$\frac{{x}_{1}+{x}_{2}}{2}$,問:曲線y=f(x)在點x0處的切線能否與y軸垂直,若能,求出該切線的方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱CC1與DD1的中點
(1)證明:直線C1F∥平面BDE;
(2)求二面角A-BD-E的正切值.

查看答案和解析>>

同步練習(xí)冊答案