10.已知函數(shù)f(x)=alnx-$\frac{1}{2}$x2+kx,其中a∈R,k∈R且a≠0.
(I)若k=0,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)a=1,若函數(shù)f(x)存在兩個(gè)零點(diǎn)x1,x2(x1<x2),且x0=$\frac{{x}_{1}+{x}_{2}}{2}$,問(wèn):曲線(xiàn)y=f(x)在點(diǎn)x0處的切線(xiàn)能否與y軸垂直,若能,求出該切線(xiàn)的方程,若不能,請(qǐng)說(shuō)明理由.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)對(duì)于能否問(wèn)題,可先假設(shè)能,即設(shè)f(x)在(x0,f(x0))的切線(xiàn)垂直于y軸,其中f(x)=lnx-$\frac{1}{2}$x2+kx,結(jié)合題意,列出方程組,證得函數(shù)h(t)=lnt-$\frac{t-1}{t+1}$在(0,1)上單調(diào)遞增,最后出現(xiàn)矛盾,說(shuō)明假設(shè)不成立,即切線(xiàn)不能垂直于y軸.

解答 解:(Ⅰ)k=0時(shí),f(x)=alnx-$\frac{1}{2}$x2,(x>0,a≠0),
f′(x)=$\frac{a}{x}$-x=$\frac{a{-x}^{2}}{x}$,
a<0時(shí),f′(x)<0,f(x)在(0,+∞)遞減;
a>0時(shí),令f′(x)>0,解得:0<x<a,令f′(x)<0,解得:x>a,
∴f(x)在(0,a)遞增,在(a,+∞)遞減;
(Ⅱ)a=1時(shí),f(x)=lnx-$\frac{1}{2}$x2+kx,
若曲線(xiàn)y=f(x)在點(diǎn)x0處的切線(xiàn)與y軸垂直,
則lnx1-$\frac{1}{2}$${{x}_{1}}^{2}$+kx1=0①,
lnx2-$\frac{1}{2}$${{x}_{2}}^{2}$+kx2=0②,
x1+x2=2x0③,
$\frac{1}{{x}_{0}}$-x0=k④同時(shí)成立,
①-②得:ln$\frac{{x}_{1}}{{x}_{2}}$-$\frac{1}{2}$(x1+x2)(x1-x2)+k(x1-x2)=0,
將③代入得:k=x0-$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{{x}_{1}-x}_{2}}$⑤,
由④⑤得:ln$\frac{{x}_{1}}{{x}_{2}}$=$\frac{\frac{{x}_{1}}{{x}_{2}}-1}{\frac{{x}_{1}}{{x}_{2}}+1}$⑥,
∵0<x1<x2,令t=$\frac{{x}_{1}}{{x}_{2}}$,則0<t<1,
⑥可化為:lnt=$\frac{t-1}{t+1}$,(0<t<1)⑦,
令h(t)=lnt-$\frac{t-1}{t+1}$,(0<t<1),
則h′(t)=$\frac{{t}^{2}+1}{{t(t+1)}^{2}}$>0,
h(t)在(0,1)遞增,h(t)<h(1)=0,
∴l(xiāng)nt<$\frac{t-1}{t+1}$與⑦矛盾,
∴曲線(xiàn)y=f(x)在點(diǎn)x0處的切線(xiàn)與y軸不垂直.

點(diǎn)評(píng) 此題是個(gè)難題.本題主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時(shí),導(dǎo)數(shù)大于等于零;當(dāng)函數(shù)為減函數(shù)時(shí),導(dǎo)數(shù)小于等于零,根據(jù)解題要求選擇是否分離變量,體現(xiàn)了轉(zhuǎn)化的思想和分類(lèi)討論以及數(shù)形結(jié)合的思想方法,同時(shí)考查了學(xué)生的靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力和計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知|$\overrightarrow a}$|=1,$\overrightarrow a$與$\overrightarrow b$的夾角是$\frac{π}{3}$,($\overrightarrow a+2\overrightarrow b$)•$\overrightarrow a$=3,則|$\overrightarrow b}$|的值是( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.因式分解:a7-ab6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知矩陣$M=[{\begin{array}{l}1&0\\ 2&2\end{array}}]$,求逆矩陣M-1的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,AB是⊙O的直徑,CB與⊙O相切于B,E為線(xiàn)段CB上一點(diǎn),連接AC、AE,分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F.
(Ⅰ)求證:△CDF∽△GEF;
(Ⅱ)若E為CB的中點(diǎn),EG=1,GA=3,求線(xiàn)段CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,四棱錐P-ABCD的底面是直角梯形.∠BAD=∠CDA=90°,直線(xiàn)PD⊥底面ABCD,AB=1,DC=2,AD=$\sqrt{3}$.點(diǎn)E是BC的中點(diǎn).
(1)求證:AE⊥平面PBD;(2)若PD=$\frac{3}{2}$,求直線(xiàn)PC與平面PAE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x),若函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),且f(4)=1,則不等式f(x)<ex的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位建立坐標(biāo)系,已知直線(xiàn)l的極坐標(biāo)方程為2ρcosθ+ρsinθ=3,曲線(xiàn)C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=3sinα}\end{array}\right.$(α為參數(shù)).
(Ⅰ)求曲線(xiàn)C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(Ⅱ)P(1,1),設(shè)直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在極坐標(biāo)系中,圓A與圓C:ρ=2cosθ+4sinθ關(guān)于直線(xiàn)θ=$\frac{3π}{4}$對(duì)稱(chēng).
(1)求圓A的極坐標(biāo)方程;
(2)為圓A上任意一點(diǎn),求$\overrightarrow{OP}$•$\overrightarrow{OC}$(其中O為極點(diǎn))的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案